#### Gunter, Jason

From:

Seabourne, Rocky <rseabourne@doerun.com>

Sent:

Tuesday, December 15, 2015 7:59 AM

To:

'brandon.wiles@dnr.mo.gov'; Gunter, Jason; Montgomery, Michael; Neaville, Chris; Ty Morris;

Yingling, Mark

Subject:

Emailing: November Progress report (2)

Attachments:

November Progress report (2).pdf; 10 - Remediation Air Report - October 2015.pdf;

2015-11-10 RM NPDES Pace Lab Report.pdf

Categories:

**Red Category** 

Your message is ready to be sent with the following file or link attachments:

November Progress report (2)

Note: To protect against computer viruses, e-mail programs may prevent sending or receiving certain types of file attachments. Check your e-mail security settings to determine how attachments are handled.

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

This message is intended solely for the designated recipient and may contain confidential, privileged or proprietary information. If you have received it in error, please notify the sender immediately and delete the original and any copy or printout. Please note that any views or opinions presented in this e-mail are solely those of the author and do not necessarily represent those of The Doe Run Company. Finally, the recipient should check this message and any attachments for the presence of viruses or malware. The Doe Run Company accepts no liability for any loss or damage caused through the transmission of this e-mail.

07CR 40504703

Superfund

7402 /2/15/15

52



Remediation Group

Rocky Seabourne General Supervisor Land and Remediation rseabourne@doerun.com

December 10, 2015

Mr. Jason Gunter Remedial Project Manager U.S. Environmental Protection Agency Region 7 - Superfund Branch 11201 Renner Blvd. Lenexa, KS 66219

Re: The Doe Run Company - Elvins/Rivermines Mine Tailings Site Monthly Progress Report

Dear Mr. Gunter:

As required by Article VI, Section 56 of the Unilateral Administrative Order (UAO) (CERCLA-07-2005-0169) for the referenced project and on behalf of The Doe Run Company, the progress report for the period November 1, 2015 through November 30, 2015 is enclosed. If you have any questions or comments, please call me at 573-244-8136.

Sincerely,

Rocky Seabourne

General Supervisor Land and Remediation

**Enclosures** 

c: Mark Yingling - TDRC (electronic only)

Chris Neaville - TDRC (electronic only)

Michael Montgomery - TDRC (electronic only)

Brandon Wiles - MDNR

Ty Morris - Barr Engineering

#### **Elvins/Rivermines Mine Tailings Site**

Park Hills, Missouri

#### Removal Action - Monthly Progress Report

Period: November 1, 2015 - November 30, 2015

#### 1. Actions Performed and Problems Encountered This Period:

- a. Work continued on the development of the Post-Removal Site Control Plan for the site.
- b. Due to the vandalism that occurred, no flow was discharged into the pilot test or west treatment cell.
- Work continued on the construction activities associated with the approved stormwater management plan.

#### 2. Analytical Data and Results Received This Period:

- a. During this period, water samples were collected from just upstream of Old Missouri Highway 32, as well as from upstream and downstream of the confluence of the site discharge with Flat River. The analytical results for this event are included with this progress report.
- b. During this period, the ambient air monitoring samples for October were processed and the Ambient Air Monitoring Report for October 2015 was completed and is attached.

#### 3. Developments Anticipated and Work Scheduled for Next Period:

- a. Complete the water sampling activities.
- b. Complete air monitoring activities as described in the Removal Action Work Plan.
- c. Continue developing the Post-Removal Site Control Plan.
- d. Continue construction activities associated with the approved stormwater management plan.

#### 4. Changes in Personnel:

- a. None.
- 5. Issues or Problems Arising This Period:
  - a. None.
- 6. Resolution of Issues or Problems Arising This Period:
  - a. None.

# **Monthly Ambient Air Monitoring Report**

The Doe Run Company
Old Lead Belt Sites:
Federal, Rivermines, National, and Leadwood

October-2015



SUITE 300 1801 PARK 270 DRIVE ST. LOUIS, MO 63146

#### **Federal Site**

#### Sample Results for October-2015

|             | St. Joe (E | Ballfields) | Big Ri  | ver#4   | Water Tr<br>Pla |         |
|-------------|------------|-------------|---------|---------|-----------------|---------|
|             | TSP        | Lead        | TSP     | Lead    | TSP             | Lead    |
| Sample Date | ug/m3      | ug/m3       | ug/m3   | ug/m3   | ug/m3           | ug/m3   |
| 10/1/15     | 29         | 0.007       | 49      | 0.007   | 33              | 0.014   |
| 10/2/15     | 28         | 0.007       | 49      | 0.007   | invalid         | invalid |
| 10/5/15     | 33         | 0.021       | 34      | 0.007   | 17              | 0.013   |
| 10/6/15     | 26         | 0.021       | invalid | invalid | invalid         | invalid |
| 10/7/15     | 25         | 0.021       | invalid | invalid | 40              | 0.132   |
| 10/8/15     | 19         | 0.007       | 21      | 0.013   | 20              | 0.028   |
| 10/9/15     | 19         | 0.014       | 16      | 0.007   | 16              | 0.007   |
| 10/12/15    | 53         | 0.043       | 48      | 0.007   | 47              | 0.056   |
| 10/13/15    | 23         | 0.007       | 25      | 0.007   | 26              | 0.048   |
| 10/14/15    | 35         | 0.014       | 32      | 0.013   | 31              | 0.021   |
| 10/15/15    | 47         | 0.007       | invalid | invalid | 46              | 0.014   |
| 10/16/15    | 37         | 0.007       | invalid | invalid | invalid         | invalid |
| 10/19/15    | 54         | 0.014       | 11      | 0.000   | 54              | 0.014   |
| 10/20/15    | 36         | 0.014       | 61      | 0.034   | invalid         | invalid |
| 10/21/15    | 32         | 0.000       | 43      | 0.007   | invalid         | invalid |
| 10/22/15    | invalid    | invalid     | 40      | 0.007   | invalid         | invalid |
| 10/23/15    | 19         | 0.007       | 9       | 0.007   | invalid         | invalid |
| 10/26/15    | 19         | 0.007       | 18      | 0.007   | invalid         | invalid |
| 10/27/15    | 6          | 0.007       | 3       | 0.000   | invalid         | invalid |
| 10/28/15    | 15         | 0.021       | 13      | 0.007   | invalid         | invalid |
| 10/29/15    | 13         | 0.007       | 12      | 0.007   | invalid         | invalid |
| 10/30/15    | 7          | 0.007       | 11      | 0.007   | invalid         | invalid |

| Monthly Avg. TSP | 27    | 28    | 33    |
|------------------|-------|-------|-------|
| Monthly Avg. Pb  | 0.012 | 0.008 | 0.035 |
| Sep-15           | 0.011 | 0.014 | 0.012 |
| Aug-15           | 0.012 | 0.012 | 0.021 |
| Rolling 3-Month  | 0.012 | 0.011 | 0.022 |

Three month rolling average must be less than 0.15 ug/m3

|             | Big Riv | ver QA  |
|-------------|---------|---------|
|             | TSP     | Lead    |
| Sample Date | ug/m3   | ug/m3   |
| 10/1/15     | 49      | 0.007   |
| 10/6/15     | invalid | invalid |
| 10/8/15     | invalid | invalid |
| 10/13/15    | invalid | invalid |
| 10/15/15    | invalid | invalid |
| 10/20/15    | 60      | 0.026   |
| 10/22/15    | 38      | 0.013   |
| 10/27/15    | 4       | 0.000   |
| 10/29/15    | na      | na      |

#### **Notes**

Electrical connections have all been upgraded to code. Water Treatment Plant site is awaiting utillity company service upgrade.

Big River QA sample from 10/29/15 was missing.

#### **Rivermines**

#### Sample Results for October-2015

|             |         | ver #4  | Rivermine | s South #1 | Rivermine | s North #2 | Rivermine | es East #3 |
|-------------|---------|---------|-----------|------------|-----------|------------|-----------|------------|
|             | TSP     | Lead    | TSP       | Lead       | TSP       | Lead       | TSP       | Lead       |
| Sample Date | ug/m3   | ug/m3   | ug/m3     | ug/m3      | ug/m3     | ug/m3      | ug/m3     | ug/m3      |
| 10/1/15     | 49      | 0.007   | 98        | 0.248      | invalid   | invalid    | 33        | 0.014      |
| 10/2/15     | 49      | 0.007   | invalid   | invalid    | invalid   | invalid    | invalid   | invalid    |
| 10/5/15     | 34      | 0.007   | 89        | 0.334      | 15        | 0.007      | 17        | 0.013      |
| 10/6/15     | invalid | invalid | invalid   | invalid    | invalid   | invalid    | invalid   | invalid    |
| 10/7/15     | invalid | invalid | 103       | 0.352      | 31        | 0.053      | 40        | 0.132      |
| 10/8/15     | 21      | 0.013   | invalid   | invalid    | 20        | 0.007      | 20        | 0.028      |
| 10/9/15     | 16      | 0.007   | 21        | 0.020      | 19        | 0.007      | 16        | 0.007      |
| 10/12/15    | 48      | 0.007   | 71        | 0.055      | 45        | 0.007      | 47        | 0.056      |
| 10/13/15    | 25      | 0.007   | 60        | 0.116      | 38        | 0.075      | 26        | 0.048      |
| 10/14/15    | 32      | 0.013   | 75        | 0.189      | 32        | 0.007      | 31        | 0.021      |
| 10/15/15    | invalid | invalid | 90        | 0.195      | 43        | 0.007      | 46        | 0.014      |
| 10/16/15    | invalid | invalid | 83        | 0.195      | 31        | 0.006      | invalid   | invalid    |
| 10/19/15    | 11      | 0.000   | 46        | 0.013      | 50        | 0.046      | 54        | 0.014      |
| 10/20/15    | 61      | 0.034   | 56        | 0.013      | 60        | 0.087      | invalid   | invalid    |
| 10/21/15    | 43      | 0.007   | 59        | 0.035      | 42        | 0.042      | invalid   | invalid    |
| 10/22/15    | 40      | 0.007   | 39        | 0.013      | 36        | 0.020      | invalid   | invalid    |
| 10/23/15    | 9       | 0.007   | 10        | 0.007      | 10        | 0.027      | invalid   | invalid    |
| 10/26/15    | 18      | 0.007   | 16        | 0.013      | 15        | 0.007      | invalid   | invalid    |
| 10/27/15    | 3       | 0.000   | 6         | 0.007      | 3         | 0.007      | invalid   | invalid    |
| 10/28/15    | 13      | 0.007   | 12        | 0.013      | 9         | 0.013      | invalid   | invalid    |
| 10/29/15    | 12      | 0.007   | 46        | 0.062      | 12        | 0.013      | invalid   | invalid    |
| 10/30/15    | 11      | 0.007   | 9         | 0.007      | 10        | 0.007      | invalid   | invalid    |
|             |         |         |           |            |           |            |           |            |

| Monthly Avg. TSP | 28    | 52    | 27    | 33    |
|------------------|-------|-------|-------|-------|
| Monthly Avg. Pb  | 0.008 | 0.099 | 0.023 | 0.035 |
| Sep-15           | 0.014 | 0.077 | 0.028 | 0.012 |
| Aug-15           | 0.012 | 0.068 | 0.012 | 0.021 |
| Rolling 3-Month  | 0.011 | 0.081 | 0.021 | 0.022 |

Three month rolling average must be less than 0.15 ug/m3

|             | Big River QA |         |
|-------------|--------------|---------|
|             | TSP          | Lead    |
| Sample Date | ug/m3        | ug/m3   |
| 10/1/15     | 49           | 0.007   |
| 10/6/15     | invalid      | invalid |
| 10/8/15     | invalid      | invalid |
| 10/13/15    | invalid      | invalid |
| 10/15/15    | invalid      | invalid |
| 10/20/15    | 60           | 0.026   |
| 10/22/15    | 38           | 0.013   |
| 10/27/15    | 4            | 0.000   |
| 10/29/15    | na           | na      |

#### **Notes**

Electrical connections have all been upgraded to code. Water Treatment Plant site is awaiting utillity company service upgrade.

Big River QA sample from 10/29/15 was missing.

**Federal Site** 

Sample Results for October-2015

|             | St. Joe (Ballfields) | Big River#4  | Water Treatment     |
|-------------|----------------------|--------------|---------------------|
| Sample Date | PM10 (ug/m3)         | PM10 (ug/m3) | <b>PM10</b> (ug/m3) |
| 10/3/15     | invalid              | 27           | invalid             |
| 10/6/15     | 20                   | 19           | 23                  |
| 10/9/15     | 21                   | 32           | 14                  |
| 10/12/15    | 30                   | 30           | 26                  |
| 10/15/15    | 27                   | 21           | 27                  |
| 10/18/15    | 33                   | 31           | 30                  |
| 10/21/15    | 29                   | 27           | invalid             |
| 10/24/15    | 10                   | 13           | 11                  |
| 10/27/15    | 6                    | 2            | invalid             |
| 10/30/15    | 7                    | 11           | invalid             |
|             |                      |              |                     |
|             |                      |              |                     |

Compliance with NAAQS is less than 150 ug/m3

| Monthly Avg. PM10 | 20 | 21 | 22 |
|-------------------|----|----|----|

|             | Big River QA        |
|-------------|---------------------|
| Sample Date | <b>PM10</b> (ug/m3) |
| 10/3/15     | 21                  |
| 10/9/15     | 16                  |
| 10/15/15    | 15                  |
| 10/21/15    | 30                  |
| 10/27/15    | 8                   |
|             |                     |
|             |                     |
|             |                     |

#### Notes:

Electrical connections have all been upgraded to code. Water Treatment Plant site is awaiting utillitiy company service upgrade.

#### **Rivermines**

Sample Results for October-2015

|             | Big River #4        | Rivermines South #1 | Rivermines North #2 | Rivermines East #3 |
|-------------|---------------------|---------------------|---------------------|--------------------|
| Sample Date | <b>PM10</b> (ug/m3) | PM10 (ug/m3)        | PM10 (ug/m3)        | PM10 (ug/m3)       |
| 10/3/15     | 27                  | invalid             | invalid             | invalid            |
| 10/6/15     | 19                  | 41                  | invalid             | 23                 |
| 10/9/15     | 32                  | invalid             | invalid             | 14                 |
| 10/12/15    | 30                  | 36                  | 11                  | 26                 |
| 10/15/15    | 21                  | 8                   | 4                   | 27                 |
| 10/18/15    | 31                  | 7                   | 32                  | 30                 |
| 10/21/15    | 27                  | 3                   | 30                  | invalid            |
| 10/24/15    | 13                  | 4                   | 11                  | 11                 |
| 10/27/15    | 2                   | 3                   | 4                   | invalid            |
| 10/30/15    | 11                  | 10                  | 7                   | invalid            |

Compliance with NAAQS is less than 150 ug/m3

| Monthly Avg. PM10 | 21 | 14 | 14 | 22 |
|-------------------|----|----|----|----|

|             | Big River QA        |
|-------------|---------------------|
| Sample Date | <b>PM10</b> (ug/m3) |
| 10/3/15     | 21                  |
| 10/9/15     | 16                  |
| 10/15/15    | 15                  |
| 10/21/15    | 30                  |
| 10/27/15    | 8                   |
|             |                     |
|             |                     |

#### Notes:

Electrical connections have all been upgraded to code. Water Treatment Plant site is awaiting utillity company service upgrade.

# Meterological Data - Old Lead Belt October-2015

| Date Date | Wind Speed<br>(MPH) | Wind Direction | Sigma-Theta | Temperature (C) | Air Pressure<br>(mmHg) | Rain<br>(Inches) | Power Supply<br>(Volts) |
|-----------|---------------------|----------------|-------------|-----------------|------------------------|------------------|-------------------------|
| 01-Oct-15 | 4.208               | 0.047          | 23.17       | 12.73           | 748                    | 0                | 13.38                   |
| 02-Oct-15 | 5.184               | 3.901          | 22.6        | 12.72           | 748                    | 0                | 13.42                   |
| 03-Oct-15 | 4.666               | 12.46          | 21.8        | 10.65           | 745                    | 0                | 13.46                   |
| 04-Oct-15 | 4.696               | 355            | 22.55       | 11.21           | 747                    | 0                | 13.45                   |
| 05-Oct-15 | 2.188               | 318.3          | 22.17       | 14.48           | 748                    | 0                | 13.41                   |
| 06-Oct-15 | 2                   | 311.2          | 25.94       | 17.8            | 748                    | 0                | 13.33                   |
| 07-Oct-15 | 1.367               | 268            | 27.58       | 17.19           | 748                    | 0                | 13.34                   |
| 08-Oct-15 | 1.712               | 236.3          | 27.36       | 19.33           | 746                    | 0                | 13.29                   |
| 09-Oct-15 | 3.426               | 331.3          | 25.4        | 15.91           | 748                    | 0.06             | 13.35                   |
| 10-Oct-15 | 1.672               | 210.2          | 33.66       | 13.14           | 749                    | 0                | 13.35                   |
| 11-Oct-15 | 4.142               | 204.2          | 22.24       | 17.09           | 742                    | 0                | 13.36                   |
| 12-Oct-15 | 2.804               | 256.8          | 27.1        | 20.13           | 738                    | 0                | 13.28                   |
| 13-Oct-15 | 2.587               | 272.6          | 30.33       | 15.19           | 742                    | 0                | 13.34                   |
| 14-Oct-15 | 2.645               | 240.5          | 25.77       | 13.42           | 745                    | 0                | 13.36                   |
| 15-Oct-15 | 3.099               | 253            | 26.28       | 16.4            | 747                    | 0                | 13.35                   |
| 16-Oct-15 | 4.085               | 295.9          | 20.39       | 11.27           | 753                    | 0                | 13.37                   |
| 17-Oct-15 | 2.718               | 341.6          | 25.54       | 5.749           | 756                    | 0                | 13.5                    |
| 18-Oct-15 | 2.431               | 169.6          | 29.29       | 7.89            | 756                    | 0                | 13.5                    |
| 19-Oct-15 | 5.597               | 194.7          | 20.27       | 15.4            | 750                    | 0                | 13.4                    |
| 20-Oct-15 | 6.467               | 203.4          | 20.29       | 19.13           | 749                    | 0                | 13.33                   |
| 21-Oct-15 | 3.841               | 206.7          | 25.31       | 20.77           | 749                    | 0                | 13.28                   |
| 22-Oct-15 | 2.522               | 173.8          | 25.27       | 19.47           | 749                    | 0                | 13.29                   |
| 23-Oct-15 | 6.121               | 194.3          | 23.15       | 18.62           | 745                    | 0                | 13.33                   |
| 24-Oct-15 | 4.953               | 271.4          | 22.51       | 17.53           | 745                    | 0                | 13.32                   |
| 25-Oct-15 | 2.414               | 40.38          | 23.02       | 10.58           | 752                    | 0                | 13.43                   |
| 26-Oct-15 | 3.417               | 86.1           | 23.16       | 11.48           | 749                    | 0                | 13.43                   |
| 27-Oct-15 | 3.069               | 107.4          | 26.07       | 14.12           | 741                    | 0.58             | 13.41                   |
| 28-Oct-15 | 3.714               | 256.5          | 21.82       | 13.41           | 737                    | 0.03             | 13.41                   |
| 29-Oct-15 | 2.801               | 248.8          | 21.65       | 7.05            | 743                    | 0                | 13.5                    |
| 30-Oct-15 | 2.605               | 155.2          | 28.42       | 8.1             | 746                    | 0.01             | 13.51                   |
| 31-Oct-15 | 5.081               | 204.1          | 20.9        | 12.88           | 741                    | 0.25             | 13.47                   |



August 28, 2015

Mr. Greg Henson Chemist The Doe Run Company 881 Main Street Herculaneum, Missouri 63048

RE: Park Hill Monitoring Network 3rd Quarter 2015 Lead/PM10 Samplers and Meteorological System Performance Audit Report.

Dear Mr. Henson,

Please find enclosed the worksheets detailing the Lead/PM10 sampler's one-point flow verifications and meteorological sensors accuracy checks that were recently performed on the Doe Run Park Hills Monitoring Network. A copy of the current certifications for the audit devices that were used has also been enclosed.

All of the verifications and checks were found to be within expected guidelines.

After reviewing the enclosed information, please feel free to call with any comments or questions. Thank you for your business.

Sincerely,

John A. Kunkel

Inquest Environmental, Inc.

# **PM10 Sampler Verifications**



3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

| Date            | July 29, 2015       | Auditor_         | John Kunke | el   |            |
|-----------------|---------------------|------------------|------------|------|------------|
| Operator        | The Doe Run Company | Transfer Orifice | 1882       |      |            |
| Location        | Park Hills Network  | Slope (Qa)       | 1.04094    |      |            |
| Station         | Big River           | Intercept (Qa)   | -0.00876   |      |            |
| Sampler         | #4 Primary PM10     | Temperature      | 28.3       | _°C  | 301.5 °K   |
| Flow Controller | P2952               | Station Pressure | 30.08      | _"Hg | 764.0 mmHg |

| <b>基料性混乱</b>                   |                     |                                | Flow Ra          | ite Audit               | 2. 机树类语             | 1、大概要制度 2             | KME N.S             |
|--------------------------------|---------------------|--------------------------------|------------------|-------------------------|---------------------|-----------------------|---------------------|
| Transfe                        | r Orifice           | Sampler                        |                  |                         |                     | Flow Rate             | Assantable          |
| Manometer<br>"H <sub>2</sub> O | Flow Rate<br>m³/min | Manometer<br>"H <sub>2</sub> O | Pressure<br>(Pf) | Press. Ratio<br>(Po/Pa) | Flow Rate<br>m³/min | Percent<br>Difference | Acceptable<br>Range |
| 3.30                           | 1.105               | 25.40                          | 47.44            | 0.938                   | 1.139               | 3.08                  | ± 7%                |

| Sampler Operating Flow Rate |                  |                         |                     |                        |                        |                     |  |  |
|-----------------------------|------------------|-------------------------|---------------------|------------------------|------------------------|---------------------|--|--|
| Manometer<br>"H₂O           | Pressure<br>(Pf) | Press. Ratio<br>(Po/Pa) | Flow Rate<br>m³/min | Corrected<br>Flow Rate | Design %<br>Difference | Acceptable<br>Range |  |  |
| 25.60                       | 47.81            | 0.937                   | 1.138               | 1.103                  | -2.39                  | ± 10%               |  |  |

#### Calculations:

Pressure mmHg (Pf) - ("H<sub>2</sub>O/13.6) \* 25.4

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope\*( Sqrt("H2O\*( Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Flow Rate Percent Difference- (Sampler Flow-Orifice Flow)/Orifice Flow\*100

Corrected Flow Rate - Operating Flow\*((100-Percent Difference)/100)



3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

| July 29, 2015       | Auditor          | John Kunke                                                                                        | el                                                                                                                                 |                                                                                                                                                 |                                                                                                                                        |
|---------------------|------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| The Doe Run Company | Transfer Orifice | 1882                                                                                              |                                                                                                                                    |                                                                                                                                                 |                                                                                                                                        |
| Park Hills Network  | Slope (Qa)       | 1.04094                                                                                           |                                                                                                                                    |                                                                                                                                                 |                                                                                                                                        |
| Big River           | Intercept (Qa)   | -0.00876                                                                                          |                                                                                                                                    |                                                                                                                                                 |                                                                                                                                        |
| #4 QA PM10          | Temperature      | 28.3                                                                                              | °C                                                                                                                                 | 301.5                                                                                                                                           | °K                                                                                                                                     |
| P1019               | Station Pressure | 30.08                                                                                             | _"Hg                                                                                                                               | 764.0                                                                                                                                           | mmHg                                                                                                                                   |
|                     |                  | The Doe Run Company Park Hills Network Slope (Qa) Big River Intercept (Qa) #4 QA PM10 Temperature | The Doe Run Company  Park Hills Network  Big River  #4 QA PM10  Transfer Orifice  1882  1.04094  Intercept (Qa)  Temperature  28.3 | The Doe Run Company  Park Hills Network  Big River  #4 QA PM10  Transfer Orifice  1882  1.04094  Intercept (Qa) -0.00876  Temperature  28.3  °C | The Doe Run Company  Park Hills Network  Slope (Qa) 1.04094  Big River  Intercept (Qa) -0.00876  #4 QA PM10  Temperature 28.3 °C 301.5 |

| <b>未补入公路</b>                   | Flow Rate Audit     |                   |                          |                         |                     |                       |                     |           |            |  |
|--------------------------------|---------------------|-------------------|--------------------------|-------------------------|---------------------|-----------------------|---------------------|-----------|------------|--|
| Transfe                        | Transfer Orifice    |                   | Transfer Orifice Sampler |                         | Sampler             |                       |                     | Flow Rate | Assentable |  |
| Manometer<br>"H <sub>2</sub> O | Flow Rate<br>m³/min | Manometer<br>"H₂O | Pressure<br>(Pf)         | Press. Ratio<br>(Po/Pa) | Flow Rate<br>m³/min | Percent<br>Difference | Acceptable<br>Range |           |            |  |
| 3.40                           | 1.121               | 27.10             | 50.61                    | 0.934                   | 1.147               | 2.32                  | ± 7%                |           |            |  |

| Sampler Operating Flow Rate    |                  |                         |                     |                        |                        |                     |  |
|--------------------------------|------------------|-------------------------|---------------------|------------------------|------------------------|---------------------|--|
| Manometer<br>"H <sub>2</sub> O | Pressure<br>(Pf) | Press. Ratio<br>(Po/Pa) | Flow Rate<br>m³/min | Corrected<br>Flow Rate | Design %<br>Difference | Acceptable<br>Range |  |
| 27.10                          | 50.61            | 0.934                   | 1.147               | 1.120                  | -0.88                  | ± 10%               |  |

#### Calculations:

Pressure mmHg (Pf) - ("H2O/13.6) \* 25.4

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope\*( Sqrt("H2O\*( Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Flow Rate Percent Difference- (Sampler Flow-Orifice Flow)/Orifice Flow\*100

Corrected Flow Rate - Operating Flow\*((100-Percent Difference)/100)



3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

| Date            | January 20, 2015    | Auditor          | John Kunke | el   |       |      |
|-----------------|---------------------|------------------|------------|------|-------|------|
| Operator        | The Doe Run Company | Transfer Orifice | 1882       |      |       |      |
| Location        | Park Hills Network  | Slope (Qa)       | 1.04094    |      |       |      |
| Station         | St Joe Park         | Intercept (Qa)   | -0.00876   |      |       |      |
| Sampler         | #4 PM10             | Temperature      | 31.8       | °C   | 305.0 | °K   |
| Flow Controller | P4353               | Station Pressure | 30.08      | _"Hg | 764.0 | mmHg |

| 計算が数数                          | Flow Rate Audit     |                                |                  |                         |                     |                       |                     |  |  |  |
|--------------------------------|---------------------|--------------------------------|------------------|-------------------------|---------------------|-----------------------|---------------------|--|--|--|
| Transfe                        | r Orifice           |                                | Sam              | pler                    |                     | Flow Rate             | Assantable          |  |  |  |
| Manometer<br>"H <sub>2</sub> O | Flow Rate<br>m³/min | Manometer<br>"H <sub>2</sub> O | Pressure<br>(Pf) | Press. Ratio<br>(Po/Pa) | Flow Rate<br>m³/min | Percent<br>Difference | Acceptable<br>Range |  |  |  |
| 3.10                           | 1.077               | 24.90                          | 46.50            | 0.939                   | 1.136               | 5.48                  | ± 7%                |  |  |  |

| Sampler Operating Flow Rate |                  |                         |                     |                        |                        |                     |  |  |
|-----------------------------|------------------|-------------------------|---------------------|------------------------|------------------------|---------------------|--|--|
| Manometer<br>"H₂O           | Pressure<br>(Pf) | Press. Ratio<br>(Po/Pa) | Flow Rate<br>m³/min | Corrected<br>Flow Rate | Design %<br>Difference | Acceptable<br>Range |  |  |
| 24.90                       | 46.50            | 0.939                   | 1.136               | 1.074                  | -4.96                  | ± 10%               |  |  |

#### Calculations:

Pressure mmHg (Pf) - ("H2O/13.6) \* 25.4

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope\*( Sqrt("H2O\*( Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Flow Rate Percent Difference- (Sampler Flow-Orifice Flow)/Orifice Flow\*100

Corrected Flow Rate - Operating Flow\*((100-Percent Difference)/100)



3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

| Date            | July 29, 2015         | Auditor          | John Kunke | el  |            |
|-----------------|-----------------------|------------------|------------|-----|------------|
| Operator        | The Doe Run Company   | Transfer Orifice | 1882       |     |            |
| Location        | Park Hills Network    | Slope (Qa)       | 1.04094    |     |            |
| Station         | Rivermines (Wtr Plnt) | Intercept (Qa)   | -0.00876   |     |            |
| Sampler         | #3 PM10               | Temperature      | 31.8       | _°C | 305.0 °K   |
| Flow Controller | P2951                 | Station Pressure | 30.08      | "Hg | 764.0 mmHg |

| IN A HEALT                     | Flow Rate Audit     |                   |                  |                         |                     |                       |           |            |  |  |
|--------------------------------|---------------------|-------------------|------------------|-------------------------|---------------------|-----------------------|-----------|------------|--|--|
| Transfe                        | Transfer Orifice    |                   | Sampler          |                         | Sample              |                       | Flow Rate | Acceptable |  |  |
| Manometer<br>"H <sub>2</sub> O | Flow Rate<br>m³/min | Manometer<br>"H₂O | Pressure<br>(Pf) | Press. Ratio<br>(Po/Pa) | Flow Rate<br>m³/min | Percent<br>Difference | Range     |            |  |  |
| 3.10                           | 1.077               | 25.50             | 47.63            | 0.938                   | 1.147               | 6.50                  | ± 7%      |            |  |  |

| <b>作用17.7</b> 4                | <b>发热性</b> 混合    | Sample                  | r Operating Fl      | ow Rate                | TOTAL TO ME TO BE      | THE REAL PROPERTY.  |
|--------------------------------|------------------|-------------------------|---------------------|------------------------|------------------------|---------------------|
| Manometer<br>"H <sub>2</sub> O | Pressure<br>(Pf) | Press. Ratio<br>(Po/Pa) | Flow Rate<br>m³/min | Corrected<br>Flow Rate | Design %<br>Difference | Acceptable<br>Range |
| 25.60                          | 47.81            | 0.937                   | 1.146               | 1.072                  | -5.13                  | ± 10%               |

#### Calculations:

Pressure mmHg (Pf) - ("H<sub>2</sub>O/13.6) \* 25.4

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope\*( Sqrt("H2O\*( Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Flow Rate Percent Difference- (Sampler Flow-Orifice Flow)/Orifice Flow\*100

Corrected Flow Rate - Operating Flow\*((100-Percent Difference)/100)



3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

| Date            | July 29, 2015       | Auditor          | John Kunke | el  |          |     |
|-----------------|---------------------|------------------|------------|-----|----------|-----|
| Operator        | The Doe Run Company | Transfer Orifice | 1882       |     |          |     |
| Location        | Park Hills Network  | Slope (Qa)       | 1.04094    |     |          |     |
| Station         | Rivermines (Quarry) | Intercept (Qa)   | -0.00876   |     |          |     |
| Sampler         | #1 PM10             | Temperature      | 31.8       | _°C | 305.0 °K |     |
| Flow Controller | P4601               | Station Pressure | 30.08      | "Hg | 764.0 m  | mHg |
|                 |                     |                  |            |     |          |     |

|                                | THE REST OF         | CHE NO                         | Flow Ra          | nte Audit               | A 图 图               | C. Carlotte           | 基据联合等               |
|--------------------------------|---------------------|--------------------------------|------------------|-------------------------|---------------------|-----------------------|---------------------|
| Transfer                       | r Orifice           |                                | Sam              | npler                   |                     | Flow Rate             | Accontable          |
| Manometer<br>"H <sub>2</sub> O | Flow Rate<br>m³/min | Manometer<br>"H <sub>2</sub> O | Pressure<br>(Pf) | Press. Ratio<br>(Po/Pa) | Flow Rate<br>m³/min | Percent<br>Difference | Acceptable<br>Range |
| 3.30                           | 1.111               | 24.60                          | 45.94            | 0.940                   | 1.121               | 0.90                  | ± 7%                |

| Sampler Operating Flow Rate    |                  |                         |                     |                        |                        |                     |  |
|--------------------------------|------------------|-------------------------|---------------------|------------------------|------------------------|---------------------|--|
| Manometer<br>"H <sub>2</sub> O | Pressure<br>(Pf) | Press. Ratio<br>(Po/Pa) | Flow Rate<br>m³/min | Corrected<br>Flow Rate | Design %<br>Difference | Acceptable<br>Range |  |
| 24.50                          | 45.76            | 0.940                   | 1.121               | 1.111                  | -1.68                  | ± 10%               |  |

#### Calculations:

Pressure mmHg (Pf) - ("H2O/13.6) \* 25.4

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope\*( Sqrt("H2O\*( Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Flow Rate Percent Difference- (Sampler Flow-Orifice Flow)/Orifice Flow\*100

Corrected Flow Rate - Operating Flow\*((100-Percent Difference)/100)



3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

| K    |
|------|
| nmHg |
|      |

| Flow Rate Audit                |                     |                                |                  |                         |                     |                       |                     |  |
|--------------------------------|---------------------|--------------------------------|------------------|-------------------------|---------------------|-----------------------|---------------------|--|
| Transfer                       | r Orifice           |                                | Sam              | pler                    |                     | Flow Rate             | Accentable          |  |
| Manometer<br>"H <sub>2</sub> O | Flow Rate<br>m³/min | Manometer<br>"H <sub>2</sub> O | Pressure<br>(Pf) | Press. Ratio<br>(Po/Pa) | Flow Rate<br>m³/min | Percent<br>Difference | Acceptable<br>Range |  |
| 3.30                           | 1.111               | 26.00                          | 48.56            | 0.936                   | 1.136               | 2.25                  | ± 7%                |  |

| Sampler Operating Flow Rate    |                  |                         |                     |                        |                        |                     |  |
|--------------------------------|------------------|-------------------------|---------------------|------------------------|------------------------|---------------------|--|
| Manometer<br>"H <sub>2</sub> O | Pressure<br>(Pf) | Press. Ratio<br>(Po/Pa) | Flow Rate<br>m³/min | Corrected<br>Flow Rate | Design %<br>Difference | Acceptable<br>Range |  |
| 26.10                          | 48.75            | 0.936                   | 1.136               | 1.110                  | -1.77                  | ± 10%               |  |

#### Calculations:

Pressure mmHg (Pf) - ("H<sub>2</sub>O/13.6) \* 25.4

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope\*( Sqrt("H2O\*( Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Flow Rate Percent Difference- (Sampler Flow-Orifice Flow)/Orifice Flow\*100

Corrected Flow Rate - Operating Flow\*((100-Percent Difference)/100)

# Lead/TSP Sampler Verifications



3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

| Date            | July 29, 2015       | Auditor          | John Kunk | el   |       |      |
|-----------------|---------------------|------------------|-----------|------|-------|------|
| Operator        | The Doe Run Company | Transfer Orifice | 1882      |      |       |      |
| Location        | Park Hills Network  | Slope (Qa)       | 1.04094   |      |       |      |
| Station         | Big River Primary   | Intercept (Qa)   | -0.00876  |      |       |      |
| Sampler         | #4 TSP              | Temperature      | 28.3      | _°C  | 301.5 | °K   |
| Flow Controller | P4557               | Station Pressure | 30.08     | _"Hg | 764.0 | mmHg |

| ・A CF S 開催や                    | DE NIFE WAS         | SAP WAR PARTIES TO             | Flow Ra          | ite Audit               | <b>米</b> 基於         |                        | THE THE STREET      |
|--------------------------------|---------------------|--------------------------------|------------------|-------------------------|---------------------|------------------------|---------------------|
| Transfe                        | r Orifice           |                                | Sam              | npler                   |                     | Calibratian            | Assentable          |
| Manometer<br>"H <sub>2</sub> O | Flow Rate<br>m³/min | Manometer<br>"H <sub>2</sub> O | Pressure<br>(Pf) | Press. Ratio<br>(Po/Pa) | Flow Rate<br>m³/min | Calibration<br>Error % | Acceptable<br>Range |
| 3.85                           | 1.193               | 23.90                          | 44.65            | 0.942                   | 1.239               | 3.86                   | ± 7%                |

| Sampler Operating Flow Rate |                  |                         |                     |                        |                     |  |  |  |
|-----------------------------|------------------|-------------------------|---------------------|------------------------|---------------------|--|--|--|
| Manometer<br>"H₂O           | Pressure<br>(Pf) | Press. Ratio<br>(Po/Pa) | Flow Rate<br>m³/min | Corrected<br>Flow Rate | Acceptable<br>Range |  |  |  |
| 23.00                       | 42.97            | 0.944                   | 1.242               | 1.194                  | 1.10 - 1.70         |  |  |  |

#### Calculations:

Pressure mmHg (Pf) - "H<sub>2</sub>O \* 1.86832

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope\*( Sqrt("H2O\*( Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Calibration Error - (Sampler Flow-Orifice Flow)/Orifice Flow\*100



3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

| Date            | July 29, 2015       | Auditor          | John Kunke | el  |       |      |
|-----------------|---------------------|------------------|------------|-----|-------|------|
| Operator        | The Doe Run Company | Transfer Orifice | 1882       |     |       |      |
| Location        | Park Hills Network  | Slope (Qa)       | 1.04094    |     |       |      |
| Station         | Big River QA        | Intercept (Qa)   | -0.00876   |     |       |      |
| Sampler         | #4 TSP              | Temperature      | 28.3       | _°C | 301.5 | °K   |
| Flow Controller | P4558               | Station Pressure | 30.08      | "Hg | 764.0 | mmHg |

| Sharate a                      | Flow Rate Audit     |                                |                  |                         |                     |                        |                     |  |  |
|--------------------------------|---------------------|--------------------------------|------------------|-------------------------|---------------------|------------------------|---------------------|--|--|
| Transfe                        | r Orifice           |                                | Sam              | npler                   |                     | Calibration            | Assantable          |  |  |
| Manometer<br>"H <sub>2</sub> O | Flow Rate<br>m³/min | Manometer<br>"H <sub>2</sub> O | Pressure<br>(Pf) | Press. Ratio<br>(Po/Pa) | Flow Rate<br>m³/min | Calibration<br>Error % | Acceptable<br>Range |  |  |
| 3.90                           | 1.200               | 23.10                          | 43.16            | 0.944                   | 1.237               | 3.08                   | ± 7%                |  |  |

| 75 E              | Sampler Operating Flow Rate |                         |                     |                        |                     |  |  |  |  |
|-------------------|-----------------------------|-------------------------|---------------------|------------------------|---------------------|--|--|--|--|
| Manometer<br>"H₂O | Pressure<br>(Pf)            | Press. Ratio<br>(Po/Pa) | Flow Rate<br>m³/min | Corrected<br>Flow Rate | Acceptable<br>Range |  |  |  |  |
| 23.10             | 43.16                       | 0.944                   | 1.237               | 1.199                  | 1.10 - 1.70         |  |  |  |  |

#### Calculations:

Pressure mmHg (Pf) - "H2O \* 1.86832

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope\*( Sqrt("H2O\*( Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Calibration Error - (Sampler Flow-Orifice Flow)/Orifice Flow\*100



3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

| Date            | July 29, 2015       | Auditor          | John Kunke | el   |       |      |
|-----------------|---------------------|------------------|------------|------|-------|------|
| Operator        | The Doe Run Company | Transfer Orifice | 1882       |      |       |      |
| Location        | Park Hills Network  | Slope (Qa)       | 1.04094    |      |       |      |
| Station         | St Joe Park         | Intercept (Qa)   | -0.00876   |      |       |      |
| Sampler         | #4 TSP              | Temperature      | 31.8       | _°C  | 305.0 | °K   |
| Flow Controller | P6792               | Station Pressure | 30.08      | _"Hg | 764.0 | mmHg |

|                   | PERSONAL PROPERTY OF THE PARTY | Not account the many of the late. | Flow Ra          | ite Audit               |                     | 全年 11 mm 松 100 mm 12 mm | SPANTE LATE A       |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------|-------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|
| Transfer          | Orifice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   | San              | npler                   |                     | Calibration<br>Error %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A                   |  |
| Manometer<br>"H₂O | Flow Rate<br>m³/min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Manometer<br>"H <sub>2</sub> O    | Pressure<br>(Pf) | Press. Ratio<br>(Po/Pa) | Flow Rate<br>m³/min |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Acceptable<br>Range |  |
| 3.70              | 1.176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22.60                             | 42.22            | 0.945                   | 1.242               | 5.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ± 7%                |  |

| Sampler Operating Flow Rate |                  |                         |                     |                        |                     |  |  |  |
|-----------------------------|------------------|-------------------------|---------------------|------------------------|---------------------|--|--|--|
| Manometer<br>"H₂O           | Pressure<br>(Pf) | Press. Ratio<br>(Po/Pa) | Flow Rate<br>m³/min | Corrected<br>Flow Rate | Acceptable<br>Range |  |  |  |
| 22.90                       | 42.78            | 0.944                   | 1.241               | 1.171                  | 1.10 - 1.70         |  |  |  |

#### Calculations:

Pressure mmHg (Pf) - "H2O \* 1.86832

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope\*( Sqrt("H2O\*( Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Calibration Error - (Sampler Flow-Orifice Flow)/Orifice Flow\*100



3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

| Date            | July 29, 2015            | Auditor          | John Kunke | el   |       |      |
|-----------------|--------------------------|------------------|------------|------|-------|------|
| Operator        | The Doe Run Company      | Transfer Orifice | 1882       |      |       |      |
| Location        | Park Hills Network       | Slope (Qa)       | 1.04094    |      |       |      |
| Station         | Rivermines (Water Plant) | Intercept (Qa)   | -0.00876   |      |       |      |
| Sampler         | TSP                      | Temperature      | 31.8       | °C   | 305.0 | °K   |
| Flow Controller | P4475                    | Station Pressure | 30.08      | _"Hg | 764.0 | mmHg |

| Flow Rate Audit                |                     |                                |                  |                         |                     |                        |                     |  |  |
|--------------------------------|---------------------|--------------------------------|------------------|-------------------------|---------------------|------------------------|---------------------|--|--|
| Transfe                        | r Orifice           |                                | Sam              | pler                    |                     | Calibaatiaa            | Assautable          |  |  |
| Manometer<br>"H <sub>2</sub> O | Flow Rate<br>m³/min | Manometer<br>"H <sub>2</sub> O | Pressure<br>(Pf) | Press. Ratio<br>(Po/Pa) | Flow Rate<br>m³/min | Calibration<br>Error % | Acceptable<br>Range |  |  |
| 3.70                           | 1.176               | 24.40                          | 45.59            | 0.940                   | 1.232               | 4.76                   | ± 7%                |  |  |

| NAME OF STREET    | Sampler Operating Flow Rate |                         |                     |                        |                     |  |  |  |  |
|-------------------|-----------------------------|-------------------------|---------------------|------------------------|---------------------|--|--|--|--|
| Manometer<br>"H₂O | Pressure<br>(Pf)            | Press. Ratio<br>(Po/Pa) | Flow Rate<br>m³/min | Corrected<br>Flow Rate | Acceptable<br>Range |  |  |  |  |
| 24.50             | 45.77                       | 0.940                   | 1.232               | 1.173                  | 1.10 - 1.70         |  |  |  |  |

#### Calculations:

Pressure mmHg (Pf) - "H2O \* 1.86832

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope\*( Sqrt("H2O\*( Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Calibration Error - (Sampler Flow-Orifice Flow)/Orifice Flow\*100



3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

| Date            | July 29, 2015       | Auditor_         | John Kunke | el   |         |      |
|-----------------|---------------------|------------------|------------|------|---------|------|
| Operator        | The Doe Run Company | Transfer Orifice | 1882       |      |         |      |
| Location        | Park Hills Network  | Slope (Qa)       | 1.04094    |      |         |      |
| Station         | Rivermines (Quarry) | Intercept (Qa)   | -0.00876   |      |         |      |
| Sampler         | #1 TSP              | Temperature      | 31.8       | °C   | 305.0 ° | Ϋ́Κ  |
| Flow Controller | P2940               | Station Pressure | 30.08      | _"Hg | 764.0 r | nmHg |

| THE CHIEF IS                   | all articles (2     | A LEW MARCH ST.                | Flow Ra          | te Audit                | 18. 18. 19. 19      | 216 X4114              |                     |
|--------------------------------|---------------------|--------------------------------|------------------|-------------------------|---------------------|------------------------|---------------------|
| Transfe                        | r Orifice           |                                | Sam              | pler                    |                     | Calibration            | Accentable          |
| Manometer<br>"H <sub>2</sub> O | Flow Rate<br>m³/min | Manometer<br>"H <sub>2</sub> O | Pressure<br>(Pf) | Press. Ratio<br>(Po/Pa) | Flow Rate<br>m³/min | Calibration<br>Error % | Acceptable<br>Range |
| 3.60                           | 1.160               | 23.70                          | 44.28            | 0.942                   | 1.240               | 6.90                   | ± 7%                |

| WEITE TALE                     | Sampler Operating Flow Rate |                         |                     |                        |                     |  |  |  |  |  |
|--------------------------------|-----------------------------|-------------------------|---------------------|------------------------|---------------------|--|--|--|--|--|
| Manometer<br>"H <sub>2</sub> O | Pressure<br>(Pf)            | Press. Ratio<br>(Po/Pa) | Flow Rate<br>m³/min | Corrected<br>Flow Rate | Acceptable<br>Range |  |  |  |  |  |
| 23.20                          | 43.35                       | 0.943                   | 1.241               | 1.155                  | 1.10 - 1.70         |  |  |  |  |  |

#### Calculations:

Pressure mmHg (Pf) - "H<sub>2</sub>O \* 1.86832

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope\*( Sqrt("H2O\*( Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Calibration Error - (Sampler Flow-Orifice Flow)/Orifice Flow\*100



3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

| Date            | July 29, 2015             | Auditor_         | John Kunke | el   |         |      |
|-----------------|---------------------------|------------------|------------|------|---------|------|
| Operator        | The Doe Run Company       | Transfer Orifice | 1882       |      |         |      |
| Location        | Park Hills Network        | Slope (Qa)       | 1.04094    |      |         |      |
| Station         | Rivermines (above quarry) | Intercept (Qa)   | -0.00876   |      |         |      |
| Sampler         | #1 TSP                    | Temperature      | 31.8       | _°C  | 305.0   | Ϋ́Κ  |
| Flow Controller | P2941                     | Station Pressure | 30.08      | _"Hg | 764.0 r | nmHg |

|                                | 42 (42), U-10 (4)<br>10 (1-1) (4-1) (4-1) | CONTRACTOR OF THE              | Flow Ra          | ate Audit               | Man to the second   | The Parish             | 114 25 15           |
|--------------------------------|-------------------------------------------|--------------------------------|------------------|-------------------------|---------------------|------------------------|---------------------|
| Transfe                        | r Orifice                                 |                                | San              | npler                   |                     | Calibuatian            | Assautable          |
| Manometer<br>"H <sub>2</sub> O | Flow Rate<br>m³/min                       | Manometer<br>"H <sub>2</sub> O | Pressure<br>(Pf) | Press. Ratio<br>(Po/Pa) | Flow Rate<br>m³/min | Calibration<br>Error % | Acceptable<br>Range |
| 3.70                           | 1.176                                     | 23.20                          | 43.35            | 0.943                   | 1.243               | 5.70                   | ± 7%                |

| Sampler Operating Flow Rate    |                  |                         |                     |                        |                     |
|--------------------------------|------------------|-------------------------|---------------------|------------------------|---------------------|
| Manometer<br>"H <sub>2</sub> O | Pressure<br>(Pf) | Press. Ratio<br>(Po/Pa) | Flow Rate<br>m³/min | Corrected<br>Flow Rate | Acceptable<br>Range |
| 22.90                          | 42.78            | 0.944                   | 1.244               | 1.173                  | 1.10 - 1.70         |

#### Calculations:

Pressure mmHg (Pf) - "H<sub>2</sub>O \* 1.86832

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope\*( Sqrt("H2O\*( Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Calibration Error - (Sampler Flow-Orifice Flow)/Orifice Flow\*100

## Calibration Orifice Certification Worksheet



TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

#### ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5028A

| Date - Ja<br>Operator |                         | Rootsmeter<br>Orifice I.I | - /                          | 333620<br>1882                                 | Ta (K) -<br>Pa (mm) -            | 292<br>765.81                        |
|-----------------------|-------------------------|---------------------------|------------------------------|------------------------------------------------|----------------------------------|--------------------------------------|
| PLATE<br>OR<br>VDC #  | VOLUME<br>START<br>(m3) | VOLUME<br>STOP<br>(m3)    | DIFF<br>VOLUME<br>(m3)       | DIFF<br>TIME<br>(min)                          | METER<br>DIFF<br>Hg<br>(mm)      | ORFICE<br>DIFF<br>H2C<br>(in.)       |
| 1<br>2<br>3<br>4<br>5 | NA<br>NA<br>NA<br>NA    | NA<br>NA<br>NA<br>NA      | 1.00<br>1.00<br>1.00<br>1.00 | 1.3360<br>1.0560<br>0.9570<br>0.8870<br>0.6670 | 4.3<br>6.8<br>8.2<br>9.5<br>16.5 | 1.50<br>2.50<br>3.00<br>3.50<br>6.00 |

#### DATA TABULATION

| Vstd                                           | (x axis)<br>Qstd                               | (y axis)                                       |      | Va                                             | (x axis)<br>Qa                                 | (y axis)                                       |
|------------------------------------------------|------------------------------------------------|------------------------------------------------|------|------------------------------------------------|------------------------------------------------|------------------------------------------------|
| 1.0225<br>1.0191<br>1.0173<br>1.0155<br>1.0061 | 0.7654<br>0.9651<br>1.0630<br>1.1449<br>1.5084 | 1.2420<br>1.6034<br>1.7564<br>1.8972<br>2.4840 |      | 0.9943<br>0.9910<br>0.9892<br>0.9875<br>0.9784 | 0.7443<br>0.9385<br>1.0337<br>1.1133<br>1.4668 | 0.7563<br>0.9763<br>1.0695<br>1.1552<br>1.5125 |
| Qstd slo                                       | t (b) =<br>ent (r) =                           | 1.66236<br>-0.01438<br>0.99927                 | T-11 | Qa slope<br>intercept<br>coefficie             | t (b) =                                        | 1.04094<br>-0.00876<br>0.99927                 |

#### CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)
Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time

For subsequent flow rate calculations:

Meteorological Sensor's Accuracy Checks

# Inquest Environmental, Inc. Wind Direction Sensor Performance Audit

| Operator                      | The Doe Run Co.           |
|-------------------------------|---------------------------|
| Location                      | Big River                 |
| Station Name                  | Meteorological System     |
| Technician                    | J Kunkel / M Kunkel       |
|                               |                           |
| Sensor Mfg                    | RM Young                  |
|                               |                           |
| Sensor Model                  | Wind Monitor AQ           |
| Sensor Model<br>Serial Number | Wind Monitor AQ<br>128618 |
| -                             |                           |

| Date       | 07/29/2015 |
|------------|------------|
| Start Time | 10:30      |
| Stop Time  | 11:30      |
| _          |            |

| Station Declination | 1.1   | _ Deg |
|---------------------|-------|-------|
| Measured Angle      | 180.0 | Deg   |
| Corrected Angle     | 181.1 | Deg   |
| Alignment Error     | -1.1  | Deg   |

| Vane             | Data              | Res                         | Results                      |  |
|------------------|-------------------|-----------------------------|------------------------------|--|
| Angle<br>Degrees | Logger<br>Degrees | Difference<br>± 3 Deg Limit | Total Error<br>± 5 Deg Limit |  |
| 0/360            | 1.1               | 1.1                         | 0.0                          |  |
| 90               | 91.9              | 1.9                         | 0.8                          |  |
| 180              | 181.1             | 1.1                         | 0.0                          |  |
| 270              | 271.9             | 1.9                         | 0.8                          |  |

| Average Difference (Degrees)  | 1.5 |
|-------------------------------|-----|
| Average Total Error (Degrees) | 0.4 |

| Audit<br>Device | Wind Vane Alignment | Direction          |
|-----------------|---------------------|--------------------|
| Туре            | Pocket Transit      | Vane Angle Fixture |
| Mfg.            | Brunton             | R.M. Young         |
| Model           | 5008                | 18212              |
| Serial No.      | 5080304492          | None               |

Comments: Wind direction was verified by determining the orientation of the sensor in respect to True North. This was measured using a tri-pod mounted transit aligned along the length of the sensor while locked from rotating.

A magnetic declination of 1.1 degrees was used to determine True North. The linearity of the sensor was determined by aligning the sensor to an indexed test fixture provided by the manufacturer. The four cardinal directions were verified using the fixture. No adjustments were made to the sensor.

## Wind Speed Sensor Performance Audit

Operator The Doe Run Co.

Location Big River

Station Name Meteorological System

Auditor(s) J Kunkel / M Kunkel

 Date
 07/29/2015

 Start Time
 10:30

 Stop Time
 11:30

Sensor Mfg RM Young
Sensor Model Wind Monitor AQ
Serial Number 128618
Sensor Height 10.0 Meters

dit Standard DAS Response Limit ± (0.2

| Audit 9 | Standard | DAS Response |            | Limit |
|---------|----------|--------------|------------|-------|
| RPM     | M/S      | M/S          | Difference | M/S   |
| Zero    | 0.00     | 0.00         | 0.00       | 0.25  |
| 300     | 1.54     | 1.56         | 0.02       | 0.25  |
| 600     | 3.07     | 3.07         | 0.00       | 0.25  |
| 1200    | 6.14     | 6.15         | 0.01       | 0.56  |
| 1800    | 9.22     | 9.21         | -0.01      | 0.71  |
| 3600    | 18.43    | 18.44        | 0.01       | 1.17  |
| 5400    | 27.65    | 27.63        | -0.02      | 1.63  |
| 7200    | 36.86    | 36.85        | -0.01      | 2.09  |
|         | Average  |              | 0.00       |       |

± (0.25 m/s + 5%)

| Audit<br>Device | Anemometer Drive |
|-----------------|------------------|
| Туре            | Variable Speed   |
| Mfg.            | R.M. Young       |
| Model           | 18801            |
| Serial No.      | CAO1631          |

Comments: Wind speed was verified using a variable speed anemometer drive. The propellor was removed from the sensor and the drive was connected using a flexible connector. The sensor was then rotated in the appropiate direction at several different speeds. Sensor responses were taken from the data logger. No adjustments were made to the sensor.

#### **Temperature Sensor Performance Audit**

| Operator     | The Doe Run Co.       | Date       | 07/29/201 |
|--------------|-----------------------|------------|-----------|
| Location     | Big River             | Start Time | 10:30     |
| Station Name | Meteorological System | Stop Time  | 11:30     |
| Technician - | J Kunkel / M Kunkel   |            |           |

#### **Sensor Information**

| Climatronics |
|--------------|
| NA           |
| NA           |
| 2 meters     |
|              |

| Audit Device | Sensor            |                  |  |  |  |
|--------------|-------------------|------------------|--|--|--|
| °C           | Data Logger<br>°C | Difference<br>°C |  |  |  |
| 0.5          | 0.5               | 0.0              |  |  |  |
| 34.1         | 33.9              | -0.2             |  |  |  |
| 44.0         | 43.9              | -0.1             |  |  |  |
|              | Average           | -0.1             |  |  |  |

Note: The limit for each point is +/- 0.5 °C

| Audit Device |                     |  |  |  |  |  |
|--------------|---------------------|--|--|--|--|--|
| Туре         | Digital Thermometer |  |  |  |  |  |
| Mfg.         | Control Company     |  |  |  |  |  |
| Model        | 15-077-8            |  |  |  |  |  |
| Serial No.   | 221381405           |  |  |  |  |  |

Comments: The temperature is verified by co-locating the sensor with a certified digital thermometer. The verification is conducted at three levels using two water baths (iced and hot water) and the ambient temperature.

The sensor error was determined by comparing the sensor's data logger response to the display on the certified digital thermometer. No adjustments were made to the sensor.

#### **Barometric Pressure Sensor Performance Audit**

Operator The Doe Run Co.

Location Big River

Station Name Meteorological System

Technician J Kunkel / M Kunkel

 Date
 07/29/2015

 Start Time
 10:30

 Stop Time
 11:30

 Sensor Mfg
 Setra

 Sensor Model
 276

 Serial Number
 2626447

|                       | Data Logger Response |                     |  |  |
|-----------------------|----------------------|---------------------|--|--|
| Audit Device<br>mm HG | BP<br>mm HG          | Difference<br>mm HG |  |  |
| 741.20                | 744.60               | 3.40                |  |  |

Note: Limit is +/- 7.5 mm HG.

|            | Audit Device      |
|------------|-------------------|
| Туре       | Digital Barometer |
| Mfg.       | AIR               |
| Model      | AIR-HB-1A         |
| Serial No. | 6G3745            |

Comments: The barometric pressure is verified by co-locating the sensor with a certified digital barometer. The verification was conducted at one level after allowing the sensor and calibration device ample time to stabilize.

The sensor error was determined by comparing the sensor's data logger response to the display on the certified digital barometer. No adjustments were made to the sensor.

#### **Precipitation Gauge Performance Audit**

Operator The Doe Run Co
Location Big River
Station Name Meteorological System
Technician J Kunkel / M Kunkel

 Date
 07/29/2015

 Start Time
 10:30

 Stop Time
 11:30

 Sensor Mfg
 Texas Electronics

 Sensor Model
 TR525I

 Serial Number
 36611-805

 Diameter (inches)
 6.00

| A. die Doubles           | Data Logger Response |                 |  |  |
|--------------------------|----------------------|-----------------|--|--|
| Audit Device  Known Tips | Gauge<br>Tips        | Difference<br>% |  |  |
| 96.00                    | 90.00                | -6.25           |  |  |

Note: Limit is +/- 10%.

|            | Audit Device      |
|------------|-------------------|
| Туре       | Graduated Beaker  |
| Mfg.       | Texas Instruments |
| Model      | FC-525            |
| Serial No. | NA                |

Comments: The precipitation gauge output was verified using a field calibration kit supplied by the manufacturer. The kit consists of a graduated beaker and a calibration funnel using a precision orifice at the water outlet.

Water was measured in the beaker and poured into the funnel while mounted on the gauge. The amount of precipitation recorded by the data logger was then compared to the known amount of water passing through the funnel. 100 tips equals one inch of rainfall. The gauge was cleaned and no adjustments were made.

# **Meteorological Audit Devices Certifications**

# BRUNTON OUTDOOR GROUP

CERTIFICATE OF CALIBRATION

Equipment Owner

| Calibration traceable to the National institute of Standards and Technology in accordance with MIL-STD-45662A has been accomplish on the instrument listed below by comparison with standards maintained by the Brunton Outdoor Group. The accuracy and stability of all standards maintained by the Brunton Outdoor Group are traceable to national standards maintained by the National Institute of Standards and Technology in Washington, D.C. and Boulder, CO. Completed record of all work preformed is maintained by the Brunton Outdoor Group and is available for inspection upon request. |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| This unit has been calibrated to Lietz TM10E serial number 30937 traceable to N.B.S. Number 738227675 this fully Day 30 20 19.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Description Pocket Transit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Purchase Order25643 0329.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Order Number <u>50 - 070367</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Model Number F-3008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Serial Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Calibration Date 7/30/14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Recalibration Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Signed Elis Alys 6/14 1/30/14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Quality Control Coordinator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |



#### CALIBRATION PROCEDURE 18801/18810 ANEMOMETER DRIVE

DWG: CP18801(A)

REV: C101107 BY: TJT

PAGE: 2 of 4 DATE: 10/11/07

CHK: JC

W.C. GAS-12

## CERTIFICATE OF CALIBRATION AND TESTING

MODEL:

18801 (Comprised of Models 18820 Control Unit & 18830 Motor Assembly)

SERIAL NUMBER:

CA01631

R. M. Young Company certifies that the above equipment was inspected and calibrated prior to shipment in accordance with established manufacturing and testing procedures. Standards established by R.M. Young Company for calibrating the measuring and test equipment used in controlling product quality are traceable to the National Institute of Standards and Technology.

| Nominal<br>Motor<br>Rpm | Output<br>Frequency<br>Hz (1) | Calculated<br>Rpm (2)    | Indicated<br>Rpm (3) |
|-------------------------|-------------------------------|--------------------------|----------------------|
| 600                     | 320                           | 600                      | 600                  |
| 1200                    | 640                           | 1200                     | 1200                 |
| 2400                    | 1280                          | 2400                     | 2400                 |
| 4200                    | 2240                          | 4200                     | 4200                 |
| 6,000                   | 3200                          | 6000                     | 6000                 |
| 8,100                   | 4320                          | 8100                     | 8100                 |
| 9,900                   | 5280                          | 9900                     | 9900                 |
| ×                       |                               | rclockwise rotation veri | fied                 |

| (1)<br>(2)<br>(3) | Frequency output produces 32 pulses per revolution of motor snart. |                           |                      |              |  |  |  |  |
|-------------------|--------------------------------------------------------------------|---------------------------|----------------------|--------------|--|--|--|--|
|                   | * Indicates                                                        | out of tolerance          |                      |              |  |  |  |  |
| X                 | No Calibration                                                     | Adjustments Required      | As Found             | ☐ As Left    |  |  |  |  |
| Tracea            | able frequency                                                     | meter used in calibration | Model: <u>DP5740</u> | SN: 4863     |  |  |  |  |
|                   | f inspection<br>tion Interval                                      | 16 Dec 2014<br>One Year   |                      |              |  |  |  |  |
|                   |                                                                    |                           | Tested I             | By <u>EC</u> |  |  |  |  |

Filename: CP18801(A).doc



## Calibration complies with ISO/IEC 17025, ANSI/NCSL Z540-1, and 9001



Cert. No.: 4000-6726396 Traceable® Certificate of Calibration for Digital Thermometer

Cust ID:Inquest Environmental Inc., 3609 Mojave Court, Suite E, Columbia, MO 65202 U.S.A. (RMA:995292) Instrument Identification:

Model Numbers: 15-077-8, 11705843 S/N: 221381404 Manufacturer: Control Company

Model: 15-077-7

S/N: 51202300

#### Standards/Equipment:

| Description Temperature Calibration Bath TC-179 Thermistor Module Temperature Probe Temperature Calibration Bath TC-231 Thermistor Module Temperature Probe Temperature Calibration Bath TC-309 Thermistor Module | <u>Serial Number</u> A45240 A17118 3039 A79341 A27129 5202 B3A444 A27129 | 3/03/16<br>4/02/16<br>11/04/15<br>11/19/16 | NIST Traceable Reference  1000371058 15A0P2S-20-1 1000365407 6-CV9Y2-1-1 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------|
| Temperature Probe                                                                                                                                                                                                 | 5267                                                                     | 11/04/15<br>11/19/16                       | 1000365407<br>6-CV9Y0-1-1                                                |

#### Certificate Information:

Technician: 68 Test Conditions:

Procedure: CAL-06

22.4°C 47.0 %RH 1012 mBar Cal Date: 4/28/15

Due Date: 4/28/16

#### Calibration Data:

|         |         |          |        |         |         |        |        |         | _     |       |
|---------|---------|----------|--------|---------|---------|--------|--------|---------|-------|-------|
| Unit(s) | Nominal | As Found | In Tol | Nominal | As Left | In Tol | Min    | Max     | 40    | TUE   |
| °C      | -0.001  | 0.011    | V      | 0.004   |         |        |        | IVIAA   | ±U    | TUR   |
|         |         | 0.011    | 1      | -0.001  | -0.001  | Y      | -0.051 | 0.049   | 0.013 | 20.4  |
| °C      | 24.999  | 24.999   | Y      | 24.999  | 25.000  | - V    |        |         | 0.013 | 3.8:1 |
| 00      |         |          |        | 24.555  | 25.000  | Y      | 24.949 | 25.049  | 0.014 | 3.6:1 |
| °C      | 60.003  | 60.007   | Y      | 60.003  | 60.001  | V      |        |         | 0.014 | 5.0.1 |
| °C      | 400.000 |          |        | 00.000  | 00.001  | Υ      | 59.953 | 60.053  | 0.014 | 3.6:1 |
| C       | 100.000 | 100.012  | Y      | 100.000 | 100.004 | V      | 00.050 |         |       |       |
|         |         |          |        | .00.000 | 100.004 | 1      | 99.950 | 100.050 | 0.014 | 3 6.1 |

This Instrument was calibrated using Instruments Traceable to National Institute of Standards and Technology.

A Test Uncertainty Ratio of at least 4:1 is maintained unless otherwise stated and is calculated using the expanded measurement uncertainty. Uncertainty evaluation includes the instrument under test and is calculated in accordance with the ISO "Guide to the Expression of Uncertainty in Measurement" (GUM). The uncertainty represents an expanded uncertainty using a coverage factor k=2 herein relate only to the item calibrated. This certificate shall not be reproduced except in full, without written approval of Control Company.

Nominal=Standard's Reading; As Left=Instrument's Reading; In Tol=In Tolerance; Min/Max=Acceptance Range; ±U=Expanded Measurement Uncertainty; TUR=Test Uncertainty Ratio; Accuracy=±(Max-Min)/2; Min = As Left Nominal(Rounded) - Tolerance; Max = As Left Nominal(Rounded) + Tolerance, Date=MM/DD/YY

Aid Lodrigues
Nicol Rodriguez, Quality Manager

Aaron Judice, Technical Manage

#### Maintaining Accuracy:

In our opinion once calibrated your Digital Thermometer should maintain its accuracy. There is no exact way to determine how long calibration will be maintained. Digital Thermometers change little, if any at all, but can be affected by aging, temperature, shock, and contamination.

#### Recalibration:

For factory calibration and re-certification traceable to National Institute of Standards and Technology contact Control Company.

CONTROL COMPANY 4455 Rex Road Friendswood, TX 77546 USA Phone 281 482-1714 Fax 281 482-9448 service@control3.com www.control3.com

Control Company is an ISO 17025:2005 Calibration Laboratory Accredited by (A2LA) American Association for Laboratory Accreditation, Certificate No. 1750.01.

Control Company is ISO 9001:2008 Quality Certified by (DNV) Det Norske Veritas, Certificate No. CERT-01805-2006-AQ-HOU-RvA.

International Laboratory Accreditation Cooperation (ILAC) - Multilateral Recognition Arrangement (MRA).

Page 1 of 1

Traceable® is a registered trademark of Control Company

© 2009 Control Company



## HASS INSTRUMENT .....

6711 OLD BRANCH AVENUE • CAMP SPRINGS, MD 20748-6990 0 (301) 449-5454 • FAX (301) 449-5455

CALIBRATION REPORT

#### BAROMETER/ALTIMETER AIR Model AIR-HB-lA Serial No. 6G3745

| TEST<br>POINT | TEST<br>PRESSURE | DIGITAL<br>READOUT | READOUT<br>ERROR | CORRECTION REQUIRED |
|---------------|------------------|--------------------|------------------|---------------------|
| 1             | 930.00           | 931.9              | +1.9             | -1.9                |
| 2             | 970.00           | 971.9              | +1.9             | -1.9                |
| 3             | 1010.00          | 1011.9             | +1.9             | -1.9                |
| 4             | 1050.00          | 1051.9             | +1.9             | -1.9                |
| 5             | 1011.97          | 1013.9             | +1.9             | -1.9                |

#### NOTES:

- 1. All data are in Millibars (hPA) and were taken at 70 F(21 C).
- 2. To correct the Digital Readout of the instrument, either algebraically add the CORRECTION REQUIRED to, or algebraically subtract the READOUT ERROR from, the readout shown on the instrument.
- 3. The TEST PRESSURE was generated using Type A-1 Barometer S/N 3327, and was approached in an increasing-pressure direction.
- 4. The TEST PRESSURE for TEST POINT 5 was ambient atmospheric pressure.
- 5. The BAROMETER/ALTIMETER was horizontal during the calibration.
- 6. The LCD screen of the BAROMETER/ALTIMETER has some trash in the center of the display, but it does not interfer with the readout.
- 7. Although the Digital Readout of the instrument can be adjusted to incorporate the average CORRECTION REQUIRED, this has not been done.

Calibration Date: 10 March 2015

By: Bernard J. Harr

Bernard I. Hass

(SEAL)





November 18, 2015

Amy Sanders The Doe Run Company P. O. Box 500 Viburnum, MO 65566

RE: Project: NPDES (Rivermines)

Pace Project No.: 60207042

#### Dear Amy Sanders:

Enclosed are the analytical results for sample(s) received by the laboratory on November 11, 2015. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jamie Church

jamie.church@pacelabs.com

**Project Manager** 

James Church

**Enclosures** 







#### **CERTIFICATIONS**

Project:

NPDES (Rivermines)

Pace Project No.:

60207042

#### **Kansas Certification IDs**

9608 Loiret Boulevard, Lenexa, KS 66219
9608 Loiret Boulevard, Lenexa, KS 66219
WY STR Certification #: 2456.01
Arkansas Certification #: 15-016-0
Illinois Certification #: 003097
lowa Certification #: 118
Kansas/NELAP Certification #: E-10116

Louisiana Certification #: 03055 Nevada Certification #: KS000212008A Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407 Utah Certification #: KS00021





#### SAMPLE SUMMARY

Project:

NPDES (Rivermines)

Pace Project No.:

60207042

| Lab ID      | Sample ID                      | Matrix | Date Collected | Date Received  |
|-------------|--------------------------------|--------|----------------|----------------|
| 60207042001 | 39579/RIVERMINES<br>DOWNSTREAM | Water  | 11/10/15 10:36 | 11/11/15 08:45 |
| 60207042002 | 39580/RIVERMINES UPSTREAM      | Water  | 11/10/15 10:58 | 11/11/15 08:45 |
| 60207042003 | 39581/RIVERMINES 001           | Water  | 11/10/15 10:45 | 11/11/15 08:45 |



#### **SAMPLE ANALYTE COUNT**

Project:

NPDES (Rivermines)

Pace Project No.: 60207042

| Lab ID      | Sample ID                   | Method    | Analysts | Analytes<br>Reported | Laboratory |
|-------------|-----------------------------|-----------|----------|----------------------|------------|
| 60207042001 | 39579/RIVERMINES DOWNSTREAM | EPA 200.7 | SMW      | 6                    | PASI-K     |
|             |                             | EPA 200.7 | NDJ      | 3                    | PASI-K     |
|             |                             | SM 2540D  | CRS      | 1                    | PASI-K     |
|             |                             | EPA 300.0 | AJM      | 1                    | PASI-K     |
| 60207042002 | 39580/RIVERMINES UPSTREAM   | EPA 200.7 | SMW      | 6                    | PASI-K     |
|             |                             | EPA 200.7 | NDJ      | 3                    | PASI-K     |
|             |                             | SM 2540D  | CRS      | 1                    | PASI-K     |
|             |                             | EPA 300.0 | AJM      | . 1                  | PASI-K     |
| 60207042003 | 39581/RIVERMINES 001        | EPA 200.7 | SMW      | 3                    | PASI-K     |
|             |                             | SM 2540D  | CRS      | 1                    | PASI-K     |
|             |                             | SM 2540F  | CRS      | 1                    | PASI-K     |
|             |                             | EPA 300.0 | AJM      | 1                    | PASI-K     |



#### **ANALYTICAL RESULTS**

Project:

NPDES (Rivermines)

Pace Project No.: 60207042

| Sample: | 39579/RI\ | ERMINES |
|---------|-----------|---------|

Date: 11/18/2015 03:19 PM

Lab ID: 60207042001 Collected: 11/10/15 10:36 Received: 11/11/15 08:45

| Ν | 1a | trix: | V | √a | tei |
|---|----|-------|---|----|-----|
|   |    |       |   |    |     |

| DOWNSTREAM                   |            |             |               |              |         |                |                |            |      |
|------------------------------|------------|-------------|---------------|--------------|---------|----------------|----------------|------------|------|
| Parameters                   | Results    | Units       | PQL           | MDL          | DF      | Prepared       | Analyzed       | CAS No.    | Qual |
| 200.7 Metals, Total          | Analytical | Method: EPA | A 200.7 Prepa | aration Meth | od: EF  | PA 200.7       |                |            |      |
| Cadmium                      | 2.2J       | ug/L        | 5.0           | 0.56         | 1       | 11/12/15 14:00 | 11/13/15 13:37 | 7440-43-9  |      |
| Calcium                      | 99600      | ug/L        | 100           | 5.2          | 1       | 11/12/15 14:00 | 11/13/15 13:37 | 7440-70-2  |      |
| Lead                         | 7.3        | ug/L        | 5.0           | 1.9          | 1       | 11/12/15 14:00 | 11/13/15 13:37 | 7439-92-1  |      |
| Magnesium                    | 37700      | ug/L        | 50.0          | 13.3         | 1       | 11/12/15 14:00 | 11/13/15 13:37 | 7439-95-4  |      |
| Total Hardness by 2340B      | 404000     | ug/L        | 500           |              | 1       | 11/12/15 14:00 | 11/13/15 13:37 |            |      |
| Zinc                         | 2730       | ug/L        | 50.0          | 2.6          | 1       | 11/12/15 14:00 | 11/13/15 13:37 | 7440-66-6  |      |
| 200.7 Metals, Dissolved (LF) | Analytical | Method: EPA | A 200.7 Prepa | aration Meth | nod: EF | PA 200.7       |                |            |      |
| Cadmium, Dissolved           | 1.4J       | ug/L        | 5.0           | 0.56         | 1       | 11/17/15 16:40 | 11/18/15 12:33 | 7440-43-9  |      |
| Lead, Dissolved              | 3.1J       | ug/L        | 5.0           | 1.9          | 1       | 11/17/15 16:40 | 11/18/15 12:33 | 7439-92-1  |      |
| Zinc, Dissolved              | 2770       | ug/L        | 50.0          | 2.6          | 1       | 11/17/15 16:40 | 11/18/15 12:33 | 7440-66-6  | D9   |
| 2540D Total Suspended Solids | Analytical | Method: SM  | 2540D         |              |         |                |                |            |      |
| Total Suspended Solids       | 8.0        | mg/L        | 5.0           | 5.0          | 1       |                | 11/12/15 12:23 |            |      |
| 300.0 IC Anions 28 Days      | Analytical | Method: EPA | A 300.0       |              |         |                |                |            |      |
| Sulfate                      | 240        | mg/L        | 20.0          | 4.7          | 20      |                | 11/12/15 18:51 | 14808-79-8 |      |
|                              |            |             |               |              |         |                |                |            |      |



#### **ANALYTICAL RESULTS**

Project:

NPDES (Rivermines)

Pace Project No.: 60207042

Sample: 39580/RIVERMINES UPSTREAM

Date: 11/18/2015 03:19 PM

Lab ID: 60207042002

Collected: 11/10/15 10:58 Received: 11/11/15 08:45

Matrix: Water

| Parameters                   | Results    | Units       | PQL           | MDL          | DF     | Prepared       | Analyzed       | CAS No.    | Qua |
|------------------------------|------------|-------------|---------------|--------------|--------|----------------|----------------|------------|-----|
| 200.7 Metals, Total          | Analytical | Method: EPA | A 200.7 Prepa | aration Meth | od: EF | PA 200.7       |                |            |     |
| Cadmium                      | <0.56      | ug/L        | 5.0           | 0.56         | 1      | 11/12/15 14:00 | 11/13/15 13:41 | 7440-43-9  |     |
| Calcium                      | 42600      | ug/L        | 100           | 5.2          | 1      | 11/12/15 14:00 | 11/13/15 13:41 | 7440-70-2  |     |
| Lead                         | 3.6J       | ug/L        | 5.0           | 1.9          | 1      | 11/12/15 14:00 | 11/13/15 13:41 | 7439-92-1  |     |
| Magnesium                    | 27400      | ug/L        | 50.0          | 13.3         | 1      | 11/12/15 14:00 | 11/13/15 13:41 | 7439-95-4  |     |
| Total Hardness by 2340B      | 219000     | ug/L        | 500           |              | 1      | 11/12/15 14:00 | 11/13/15 13:41 |            |     |
| Zinc                         | 5.2J       | ug/L        | 50.0          | 2.6          | 1      | 11/12/15 14:00 | 11/13/15 13:41 | 7440-66-6  |     |
| 200.7 Metals, Dissolved (LF) | Analytical | Method: EPA | A 200.7 Prepa | aration Meth | od: EF | PA 200.7       |                |            |     |
| Cadmium, Dissolved           | 0.73J      | ug/L        | 5.0           | 0.56         | 1      | 11/17/15 16:40 | 11/18/15 12:35 | 7440-43-9  |     |
| Lead, Dissolved              | 2.6J       | ug/L        | 5.0           | 1.9          | 1      | 11/17/15 16:40 | 11/18/15 12:35 | 7439-92-1  |     |
| Zinc, Dissolved              | 25.6J      | ug/L        | 50.0          | 2.6          | 1      | 11/17/15 16:40 | 11/18/15 12:35 | 7440-66-6  | D9  |
| 2540D Total Suspended Solids | Analytical | Method: SM  | 2540D         |              |        |                |                |            |     |
| Total Suspended Solids       | 5.0        | mg/L        | 5.0           | 5.0          | 1      |                | 11/12/15 12:23 |            |     |
| 300.0 IC Anions 28 Days      | Analytical | Method: EPA | A 300.0       |              |        |                |                |            |     |
| Sulfate                      | 39.7       | mg/L        | 5.0           | 1.2          | 5      |                | 11/13/15 12:18 | 14808-79-8 |     |
|                              |            |             |               |              |        |                |                |            |     |



#### **ANALYTICAL RESULTS**

Project:

NPDES (Rivermines)

Pace Project No.:

Date: 11/18/2015 03:19 PM

60207042

| Sample: 39581/RIVERMINES 001  | Lab ID:    | 60207042003   | Collected  | d: 11/10/15 | 10:45  | Received: 11/  | 11/15 08:45 Ma | atrix: Water |      |
|-------------------------------|------------|---------------|------------|-------------|--------|----------------|----------------|--------------|------|
| Parameters                    | Results    | Units         | PQL        | MDL         | DF     | Prepared       | Analyzed       | CAS No.      | Qual |
| 200.7 Metals, Total           | Analytical | Method: EPA 2 | 00.7 Prepa | ration Meth | od: EP | A 200.7        |                |              |      |
| Cadmium                       | 10.1       | ug/L          | 5.0        | 0.56        | 1      | 11/12/15 14:00 | 11/13/15 13:44 | 7440-43-9    |      |
| Lead                          | 12.3       | ug/L          | 5.0        | 1.9         | 1      | 11/12/15 14:00 | 11/13/15 13:44 | 7439-92-1    |      |
| Zinc                          | 11300      | ug/L          | 50.0       | 2.6         | 1      | 11/12/15 14:00 | 11/13/15 13:44 | 7440-66-6    |      |
| 2540D Total Suspended Solids  | Analytical | Method: SM 25 | 40D        |             |        |                |                |              |      |
| Total Suspended Solids        | 9.0        | mg/L          | 5.0        | 5.0         | 1      |                | 11/12/15 12:24 |              |      |
| 2540F Total Settleable Solids | Analytical | Method: SM 25 | 40F        |             |        |                |                |              |      |
| Total Settleable Solids       | <0.20      | mL/L/hr       | 0.20       | 0.20        | 1      |                | 11/11/15 12:45 |              |      |
| 300.0 IC Anions 28 Days       | Analytical | Method: EPA 3 | 0.00       |             |        |                |                |              |      |
| Sulfate                       | 824        | mg/L          | 50.0       | 11.8        | 50     |                | 11/13/15 12:33 | 14808-79-8   |      |



Project:

NPDES (Rivermines)

Pace Project No.:

60207042

QC Batch:

MPRP/33894

Analysis Method:

EPA 200.7

QC Batch Method:

EPA 200.7

Analysis Description:

200.7 Metals, Total

Associated Lab Samples: 60207042001, 60207042002, 60207042003

METHOD BLANK: 1667617

Matrix: Water

Associated Lab Samples:

Date: 11/18/2015 03:19 PM

60207042001, 60207042002, 60207042003

|                         |       | Blank  | Reporting |      |                |            |
|-------------------------|-------|--------|-----------|------|----------------|------------|
| Parameter               | Units | Result | Limit     | MDL  | Analyzed       | Qualifiers |
| Cadmium                 | ug/L  | <0.56  | 5.0       | 0.56 | 11/13/15 12:54 |            |
| Calcium                 | ug/L  | <5.2   | 100       | 5.2  | 11/13/15 12:54 |            |
| Lead                    | ug/L  | <1.9   | 5.0       | 1.9  | 11/13/15 12:54 |            |
| Magnesium               | ug/L  | <13.3  | 50.0      | 13.3 | 11/13/15 12:54 |            |
| Total Hardness by 2340B | ug/L  | 2.2J   | 500       |      | 11/13/15 12:54 |            |
| Zinc                    | ug/L  | <2.6   | 50.0      | 2.6  | 11/13/15 12:54 |            |

| LABORATORY CONTROL SAMPLE: | 1667618 |       |        |       |        |            |
|----------------------------|---------|-------|--------|-------|--------|------------|
|                            |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                  | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| Cadmium                    | ug/L    | 1000  | 958    | 96    | 85-115 |            |
| Calcium                    | ug/L    | 10000 | 9290   | 93    | 85-115 |            |
| Lead                       | ug/L    | 1000  | 997    | 100   | 85-115 |            |
| Magnesium                  | ug/L    | 10000 | 9270   | 93    | 85-115 |            |
| Total Hardness by 2340B    | ug/L    |       | 61400  |       |        |            |
| Zinc                       | ug/L    | 1000  | 945    | 94    | 85-115 |            |

| MATRIX SPIKE & MATRIX SP | PIKE DUPLICA | TE: 16676  | 19    |       | 1667620 |        |       |       |        |     |     |      |
|--------------------------|--------------|------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                          |              | 2007040004 | MS    | MSD   | 140     | MOD    | 140   | MOD   | 0/ D   |     |     |      |
|                          |              | 0207040001 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter                | Units        | Result     | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Cadmium                  | ug/L         | <0.56      | 1000  | 1000  | 904     | 962    | 90    | 96    | 70-130 | 6   | 20  |      |
| Calcium                  | ug/L         | 90500      | 10000 | 10000 | 98700   | 101000 | 83    | 109   | 70-130 | 3   | 20  |      |
| Lead                     | ug/L         | 6.3        | 1000  | 1000  | 903     | 961    | 90    | 96    | 70-130 | 6   | 20  |      |
| Magnesium                | ug/L         | 49900      | 10000 | 10000 | 58300   | 60300  | 84    | 103   | 70-130 | 3   | 20  |      |
| Total Hardness by 2340B  | ug/L         | 432000     |       |       | 487000  | 501000 |       |       |        | 3   |     |      |
| Zinc                     | ug/L         | 103        | 1000  | 1000  | 972     | 1030   | 87    | 92    | 70-130 | 5   | 20  |      |



Project:

NPDES (Rivermines)

Pace Project No.:

60207042

QC Batch:

MPRP/33964

Analysis Method:

EPA 200.7

QC Batch Method:

EPA 200.7

Analysis Description:

200.7 Metals, Dissolved

Associated Lab Samples: 60207042001, 60207042002

METHOD BLANK: 1670672

Matrix: Water

Date: 11/18/2015 03:19 PM

Associated Lab Samples: 60207042001, 60207042002

| Parameter          | Units | Blank<br>Result | Reporting<br>Limit | MDL  | Analyzed       | Qualifiers |
|--------------------|-------|-----------------|--------------------|------|----------------|------------|
| Cadmium, Dissolved | ug/L  | <0.56           | 5.0                | 0.56 | 11/18/15 12:17 |            |
| Lead, Dissolved    | ug/L  | <1.9            | 5.0                | 1.9  | 11/18/15 12:17 |            |
| Zinc, Dissolved    | ug/L  | <2.6            | 50.0               | 2.6  | 11/18/15 12:17 |            |

| LABORATORY CONTROL SAMPLE: | 1670673 | Spike | LCS    | LCS   | % Rec  |            |  |
|----------------------------|---------|-------|--------|-------|--------|------------|--|
| Parameter                  | Units   | Conc. | Result | % Rec | Limits | Qualifiers |  |
| Cadmium, Dissolved         | ug/L    | 1000  | 996    | 100   | 85-115 |            |  |
| Lead, Dissolved            | ug/L    | 1000  | 1020   | 102   | 85-115 |            |  |
| Zinc, Dissolved            | ug/L    | 1000  | 1010   | 101   | 85-115 |            |  |

| MATRIX SPIKE & MATRIX SPIR | KE DUPLIC | ATE: 16706  | 74    |       | 1670675 |        |       |       |        |     |     |      |
|----------------------------|-----------|-------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                            |           |             | MS    | MSD   |         |        |       |       |        |     |     |      |
|                            |           | 60207040001 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter                  | Units     | Result      | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Cadmium, Dissolved         | ug/L      | 0.57J       | 1000  | 1000  | 1050    | 1010   | 105   | 101   | 70-130 | 5   | 20  |      |
| Lead, Dissolved            | ug/L      | 6.3         | 1000  | 1000  | 1060    | 1010   | 105   | 100   | 70-130 | 5   | 20  |      |
| Zinc, Dissolved            | ug/L      | 89.7        | 1000  | 1000  | 1130    | 1080   | 104   | 99    | 70-130 | 5   | 20  |      |

| MATRIX SPIKE SAMPLE: | 1670676 |                       |                |              |             |                 |            |
|----------------------|---------|-----------------------|----------------|--------------|-------------|-----------------|------------|
| Parameter            | Units   | 60207318003<br>Result | Spike<br>Conc. | MS<br>Result | MS<br>% Rec | % Rec<br>Limits | Qualifiers |
| Cadmium, Dissolved   | ug/L    | <0.56                 | 1000           | 1020         | 102         | 70-130          |            |
| Lead, Dissolved      | ug/L    | 13.0                  | 1000           | 1020         | 101         | 70-130          |            |
| Zinc, Dissolved      | ug/L    | 13.5J                 | 1000           | 1020         | 101         | 70-130          |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.





Project:

NPDES (Rivermines)

Pace Project No.:

60207042

QC Batch:

WET/58334

Analysis Method:

SM 2540D

QC Batch Method:

SM 2540D

Analysis Description:

<5.0

15.0

2540D Total Suspended Solids

Associated Lab Samples:

 $60207042001,\,60207042002,\,60207042003$ 

Matrix: Water

Associated Lab Samples:

METHOD BLANK: 1667249

Parameter

60207042001, 60207042002, 60207042003

Units

mg/L

Units

mg/L

mg/L

Blank Result Reporting

5.0

17.0

152

Limit

MDL Analyzed 11/12/15 12:21 5.0

Qualifiers

**Total Suspended Solids** 

SAMPLE DUPLICATE: 1667250

Parameter

60207017001 Result

Dup Result

RPD

12

4

Max RPD

10 D6

10

Qualifiers

SAMPLE DUPLICATE: 1667251

Total Suspended Solids

Date: 11/18/2015 03:19 PM

**Total Suspended Solids** 

Parameter

Units

60207026003 Result 158

Dup Result

RPD

Max RPD

Qualifiers



Project:

NPDES (Rivermines)

Pace Project No.:

60207042

QC Batch:

WETA/36872

Analysis Method:

EPA 300.0

QC Batch Method:

EPA 300.0

Analysis Description:

300.0 IC Anions

METHOD BLANK: 1667309

Matrix: Water

Associated Lab Samples:

Associated Lab Samples:

60207042001

60207042001

Blank

Reporting

Parameter

Units Result Limit

MDL Analyzed Qualifiers

Sulfate

mg/L

< 0.24

1.0

0.24 11/12/15 16:32

90-110

LABORATORY CONTROL SAMPLE:

Parameter

Parameter

1667310

Spike

LCS LCS Result % Rec % Rec

Sulfate

Sulfate

Sulfate

Units mg/L

mg/L

Conc. 5

4.6

93

Limits Qualifiers

MATRIX SPIKE SAMPLE:

1667311

60207031001 Units Result

Spike Conc.

MS Result

MS % Rec % Rec Limits

80-120

Qualifiers

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

1667312

MSD

52.6

1667313

250

MS

282

MSD % Rec

92

Max

RPD RPD Qual

Parameter Units Result

mg/L

60207047001

ND

MS Spike Conc.

Spike Conc. 1000 1000

MS Result 1060

Result 1070

MSD

% Rec 91

Limits 92 80-120

% Rec

15

Date: 11/18/2015 03:19 PM



Project:

NPDES (Rivermines)

Pace Project No.:

60207042

QC Batch:

WETA/36900

Analysis Method:

EPA 300.0

QC Batch Method:

EPA 300.0

Analysis Description:

300.0 IC Anions

Associated Lab Samples:

METHOD BLANK: 1668180

Matrix: Water

Associated Lab Samples:

60207042002, 60207042003

60207042002, 60207042003

Blank

Reporting

Parameter

Units Result Limit

Analyzed

Qualifiers

Sulfate

mg/L

< 0.24

1.0

0.24 11/13/15 10:32

LABORATORY CONTROL SAMPLE: Parameter

Parameter

1668181

Spike

LCS Result

LCS % Rec % Rec Limits

Qualifiers

Sulfate

Sulfate

Units mg/L

mg/L

Conc. 5

96

MDL

90-110

86

MATRIX SPIKE SAMPLE:

1668182

Units

mg/L

60207041004 Units Result

Spike Conc.

250

4.8

MS Result

MS % Rec % Rec Limits

80-120

Qualifiers

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

Parameter

Date: 11/18/2015 03:19 PM

1668183

MSD

25

494

1668184 MS

710

MS MSD

% Rec % Rec

Max

Sulfate

60207160001

36.5

Result

MS Spike Conc.

25

Spike Conc.

MSD Result Result 59.8 60.0

% Rec 93

Limits 80-120 RPD RPD

Qual 0 15





#### **QUALIFIERS**

Project:

NPDES (Rivermines)

Pace Project No.:

60207042

#### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### **LABORATORIES**

PASI-K Pace Analytical Services - Kansas City

#### **ANALYTE QUALIFIERS**

Date: 11/18/2015 03:19 PM

D6 The relative percent difference (RPD) between the sample and sample duplicate exceeded laboratory control limits.

Dissolved result is greater than the total. Data is within laboratory control limits.



#### **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project:

NPDES (Rivermines)

Pace Project No.: 60207042

Date: 11/18/2015 03:19 PM

| Lab ID                     | Sample ID                                         | QC Batch Method        | QC Batch                 | Analytical Method | Analytical<br>Batch |
|----------------------------|---------------------------------------------------|------------------------|--------------------------|-------------------|---------------------|
| 60207042001                | 39579/RIVERMINES DOWNSTREAM                       | EPA 200.7              | MPRP/33894               | EPA 200.7         | ICP/24932           |
| 60207042002                | 39580/RIVERMINES UPSTREAM                         | EPA 200.7              | MPRP/33894               | EPA 200.7         | ICP/24932           |
| 60207042003                | 39581/RIVERMINES 001                              | EPA 200.7              | MPRP/33894               | EPA 200.7         | ICP/24932           |
| 60207042001                | 39579/RIVERMINES<br>DOWNSTREAM                    | EPA 200.7              | MPRP/33964               | EPA 200.7         | ICP/24976           |
| 60207042002                | 39580/RIVERMINES UPSTREAM                         | EPA 200.7              | MPRP/33964               | EPA 200.7         | ICP/24976           |
| 60207042001                | 39579/RIVERMINES<br>DOWNSTREAM                    | SM 2540D               | WET/58334                |                   |                     |
| 60207042002                | 39580/RIVERMINES UPSTREAM                         | SM 2540D               | WET/58334                |                   |                     |
| 60207042003                | 39581/RIVERMINES 001                              | SM 2540D               | WET/58334                |                   |                     |
| 60207042003                | 39581/RIVERMINES 001                              | SM 2540F               | WET/58319                |                   |                     |
| 60207042001                | 39579/RIVERMINES<br>DOWNSTREAM                    | EPA 300.0              | WETA/36872               |                   |                     |
| 60207042002<br>60207042003 | 39580/RIVERMINES UPSTREAM<br>39581/RIVERMINES 001 | EPA 300.0<br>EPA 300.0 | WETA/36900<br>WETA/36900 |                   |                     |



#### Sample Condition Upon Receipt

# W0#:60207042

| Client Name: DRC                                                                         |                        |                                         | Optional                        |
|------------------------------------------------------------------------------------------|------------------------|-----------------------------------------|---------------------------------|
| Courier: FedEx ☐ UPS □ VIA □ Clay □                                                      | PEX 🗆 ECI 🗆            | Pace □ Other □ Client □                 | Proj Due Date:                  |
| Tracking #: 7749 3877 3197                                                               | Pace Shipping Label    | Used? Yes □ No√□                        | Proj Name:                      |
| Custody Seal on Cooler/Box Present: Yes                                                  | No ☐ Seals intact:     | Yes ✓ No □                              |                                 |
| Packing Material: Bubble Wrap ☐ Bubble                                                   | Bags □ Foam            | □ None □ Other □                        |                                 |
| Thermometer Used: CF+0.6 T-239 / (-262)                                                  | . ( )                  |                                         | ice, cooling process has begun. |
| Cooler Temperature: 3. 0                                                                 | (circl                 |                                         | Is of person examining          |
| Temperature should be above freezing to 6°C                                              |                        | contents:                               | V IIIIIs                        |
| Chain of Custody present:                                                                | Yes No No N/A          | 1.                                      |                                 |
| Chain of Custody filled out:                                                             | Yes No NA              | 2.                                      |                                 |
| Chain of Custody relinquished:                                                           | Yes DNo DN/A           | 3.                                      |                                 |
| Sampler name & signature on COC:                                                         | Yes □No □N/A           | 4.                                      |                                 |
| Samples arrived within holding time:                                                     | Yes □No □N/A           | 5.                                      |                                 |
| Short Hold Time analyses (<72hr):                                                        | ØYes □No □N/A          | 6.5 .5                                  |                                 |
| Rush Turn Around Time requested:                                                         | □Yes No □N/A           | 7.                                      |                                 |
| Sufficient volume:                                                                       | Yes DNo DN/A           | 8.                                      | 2 22 2 2                        |
| Correct containers used:                                                                 | ZYes □No □N/A          |                                         |                                 |
| Pace containers used:                                                                    | ZYes □No □N/A          | 9.                                      |                                 |
| Containers intact:                                                                       | ØYes □No □N/A          | 10.                                     |                                 |
| Unpreserved 5035A soils frozen w/in 48hrs?                                               | □Yes □No ØN/A          | 11.                                     |                                 |
| Filtered volume received for dissolved tests?                                            | □Yes □No ☑N/A          | 12.                                     |                                 |
| Sample labels match COC:                                                                 | Yes ONO ON/A           |                                         |                                 |
| Includes date/time/ID/analyses Matrix:                                                   | MT                     | 13.                                     |                                 |
| All containers needing preservation have been checked.                                   | Yes ONO ON/A           |                                         |                                 |
| All containers needing preservation are found to be in compliat with EPA recommendation. | nce Yes No N/A         | 14.                                     |                                 |
| Exceptions: VOA, Coliform, O&G, WI-DRO (water)                                           | □Yes ZNo               |                                         | # of added<br>ervative          |
| Trip Blank present:                                                                      | □Yes □No ØN/A          |                                         |                                 |
| Pace Trip Blank lot # (if purchased):                                                    |                        | 15.                                     | = .                             |
| Headspace in VOA vials ( >6mm):                                                          | □Yes □No <b>J</b> □N/A |                                         |                                 |
|                                                                                          |                        | 16.                                     |                                 |
| Project sampled in USDA Regulated Area:                                                  | □Yes □No ÅN/A          | 17. List State:                         |                                 |
| Additional labels attached to 5035A vials in the field?                                  | □Yes □No ZN/A          | 18,                                     |                                 |
| Client Notification/ Resolution: Copy                                                    | COC to Client? Y /     | N Field Data Required? Y                | / N                             |
| Person Contacted:                                                                        | Date/Time:             | *************************************** |                                 |
| Comments/ Resolution:                                                                    |                        |                                         |                                 |
| . 01 /                                                                                   |                        |                                         |                                 |
| June Church                                                                              |                        | 11/11/15                                |                                 |
| Project Manager Review:                                                                  |                        | Date:                                   |                                 |

### CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.



|       |                                                     | Section     |             | oject Inform       | ation:               |                    |         | Sectio<br>nvoice |            | m atlanti   |                    |                 |                         |                            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |             |             |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |     |
|-------|-----------------------------------------------------|-------------|-------------|--------------------|----------------------|--------------------|---------|------------------|------------|-------------|--------------------|-----------------|-------------------------|----------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------|-------------|---------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----|
| pan   |                                                     | eport '     | _           | Amy Sar            |                      |                    |         | Attentio         | _          | _           | _                  | nde             | rs                      |                            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                           |             |             |         |              | 1 of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                               |     |
| ess   |                                                     | opy To      |             | Alliy Sai          | rucis Parity Garders |                    |         |                  |            |             |                    | REGULATORY AGE  | REGULATORY AGENCY Page: |                            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |             |             |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |     |
|       |                                                     |             |             |                    |                      |                    | ddress  |                  |            |             |                    | ), Vib          |                         |                            |           | The same of the sa | ROUND W                     | ATER        |             |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |     |
| il To | o: asanders@doerun.com                              | urchas      | se On       | der No.:           |                      |                    |         | ace Qu           |            |             |                    | -               |                         |                            |           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and the contract of         | CRA         |             |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |     |
| ne:   |                                                     | roject      | Name        | E NDI              | DES (Rive            | arminee)           |         | aferenc          |            |             |                    |                 | -                       | -                          |           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |             | V///////    | COC#:   | 2939         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |     |
|       | (0,0)2110110                                        |             |             |                    | DEG (KIV             | cillines)          | 1       | Aanager          |            |             |                    |                 |                         |                            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Site Location               | MO          |             | 4       |              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 200                             | 70  |
| ues   | sted Due Date/TAT: 5 To 7 Days                      | roject      | Num         | oer:               |                      |                    | - 1     | ace Pro          | W allo     | _           |                    | _               |                         | -                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STATE:                      | ted Anal    | ysis Filter | ed (Y/N |              | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                               | 1   |
|       | Section C                                           | T           | T           |                    |                      |                    |         | T                | T          | Π           |                    |                 |                         |                            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |             | TIT         | TT      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |     |
|       | Required Sample Information Valid Matrix Codes      | ig<br>E     | C=COMP)     | CO                 | LLECTE               | DATE/TI            | ME      | _                |            | ⊢           | Bott               | tles            | / Pre                   | serv                       | ative     | \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NNNNNNN                     | NNN         | N N N       | N N     | N N          | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e e                             |     |
|       | MATRIX COD                                          | 트 일         | 18          | COMBOS             | ITE START            | COMPOSIT           | TE END  | 1 3              |            | 1           |                    | -               | 0                       |                            |           | or or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *See Addition               | al Com      | monte F     | Balow   |              | OCHA PRO LIA LA LA PROPERTO PER | 5                               | -   |
|       | WATER WT<br>WASTE WATER WW<br>SOULSOULD SL          | codes       |             | COMPOS             | IIE OIANI            | GRA                | 48      | 18               |            | 1           |                    | 1               | H2SO4                   |                            |           | H,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | See Addition                | iai con     | miento t    | DEION   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |     |
|       |                                                     | Valid       | 12          |                    |                      |                    |         | - 0              | E          | 10          | 0                  |                 | S)                      | 0                          | ٦.        | - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |             |             |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B                               |     |
|       | CAMPI E ID                                          | 1 8         | (G=GRAB     |                    |                      |                    |         | S m              | CONTAINERS | Unpreserved | 500 mL Unpreserved | _               | Glass                   | Plastic H <sub>2</sub> SO, | 위         | Sas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |             |             |         |              | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |     |
|       | SAMPLE ID                                           |             | 1           |                    |                      |                    |         | 1                | Į          | 989         | ese                | 1 L Unpreserved | 100                     | io T                       | 96        | N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |             |             |         |              | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                               |     |
|       | (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE           | 18          | PE          |                    |                      |                    |         | 18               | 18         | ğ           | 힐                  | Ser             | Amber                   | ast                        | E.        | 일을                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Anal                        | veis        | Test        | 1       |              | 1 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                               |     |
|       |                                                     | l ×         | ET          |                    |                      |                    |         | E                | 6          | 13          | 2                  | Pre-            | Y                       | 0                          | 닏!        | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             | ,           |             | *       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                               |     |
|       |                                                     | MATRIX CODE | SAMPLE TYPE |                    | TIME                 |                    | TIM     | - 19             | #          | 뒽           | E :                | 5 3             | 릴릴                      | 교                          | 0         | EE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |             |             |         |              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                               |     |
|       |                                                     | Z           | SAI         | DATE<br>(mm/dd/yy) | (Military)           | DATE<br>(mm/dd/yy) | (Milita | iry)             | Total      | 250         | 20                 | 7 9             | 250                     | 250                        | 100       | 500 mL Amber Glass H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D-96 4 - 98 10              |             |             |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |     |
|       | 39579 1893 N2 0 18 PZU                              | w           | T G         |                    |                      | 11/10/15           | 103     | 6                | 2          |             | 1                  |                 | 1                       |                            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CD-D, P8-D, ZN-D, HARD, SC  | 04, CD-T, P | B-T, TSS-T, | ZN-T    |              | vermines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Downstra                        | 001 |
| 2     |                                                     | -           | -           |                    |                      |                    |         | -                | 1          |             |                    | 1               |                         |                            |           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |             |             |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |     |
|       | 39580                                               | W           | G           |                    |                      | 11/10/15           | 10      | (8)              | 2          | -           | 1                  | - 3             | 1                       |                            | -         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CD-D, PB-D, ZN-D, HARD, SC  | 04, CD-T, P | B-T, TSS-T, | ZN-T    |              | vermines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Upstream                        | 00  |
|       | 3 10014                                             | -           | -           |                    | -                    | 444045             | 104     | <i>(</i> -       | +          | +           | 1                  | 1               | +                       | -                          | -         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 204 00 TOO OD T DD T 7      | PAL T       |             |         |              | Dh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 001                             | 00  |
| 5     | 39581 + 1 IBPIN                                     | - WV        | M G         | _                  |                      | 11/10/15           | 104     | 3                | 3          | 1           | +                  | 1               | 1                       |                            | -         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SO4, SS, TSS, CD-T, PB-T, 2 | LN-1        |             |         |              | Rivermin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | es 001                          | -   |
| -     |                                                     | +           | +           |                    | -                    | $\vdash$           |         | +                | +          | $\vdash$    | ++                 | +               | +                       | H                          | +         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                           |             |             |         |              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |     |
| 3     |                                                     | +           | +           |                    |                      | -                  |         | +                | +          | +           | 1                  | +               | +                       |                            | -         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |             |             |         |              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |     |
| -     |                                                     | +           | +           |                    |                      |                    | -       | +                | +          | +           | 11                 | +               | +                       |                            |           | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |             |             |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |     |
| 0     |                                                     | +           | 1           |                    |                      |                    | _       | 1                | +          | 1           |                    | $\dagger$       |                         |                            |           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                           |             |             |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |     |
| 1     |                                                     |             |             |                    |                      |                    |         |                  | 1          |             |                    |                 |                         |                            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |             |             | ,       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |     |
| 2     |                                                     |             |             |                    |                      |                    |         |                  |            |             |                    |                 |                         |                            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |             |             |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |     |
| 3     |                                                     |             |             |                    |                      |                    |         |                  | L          |             |                    |                 |                         |                            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |             |             |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |     |
| 4     |                                                     | _           | 1           |                    |                      |                    |         | -                | 1          | L           |                    | 1               |                         |                            |           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |             |             |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                               | 4   |
| 5     |                                                     | _           | -           |                    |                      |                    |         | -                | -          | -           | 1                  | -               |                         |                            |           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |             |             |         |              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 | 4   |
| 6     |                                                     | +           | +           |                    |                      |                    |         | +                | +          | -           | 1                  | +               | +                       |                            | -         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |             |             |         |              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 | 1   |
| 8     |                                                     | +           | +           | _                  | _                    |                    |         | +                | +          | -           | 1                  | +               | +                       | -                          | -         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                           |             |             |         |              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |     |
| 9     |                                                     | +           | +           |                    |                      |                    | -       | +                | +          | +           | 1                  | +               | +                       |                            | +         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                           |             |             |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |     |
| 0     |                                                     | +           | +           |                    |                      |                    | -       | +                | +          | +           | 1                  | +               | +                       |                            |           | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                           |             |             |         |              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                               | 1   |
| 1     |                                                     | +           | +           |                    |                      |                    |         | +                | +          | 1           |                    | +               | +                       |                            | $\forall$ | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |             |             |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |     |
| 2     |                                                     | +           |             |                    |                      |                    |         | 1                | T          | 1           | $\Box$             |                 |                         |                            |           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                           |             |             |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | 1   |
| 3     |                                                     |             |             |                    |                      |                    | -       |                  | T          | T           |                    |                 | -                       |                            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |             |             |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | 1   |
| 4     |                                                     |             |             |                    |                      |                    |         |                  | T          |             |                    |                 |                         |                            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |             |             |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |     |
| 5     |                                                     |             |             |                    |                      |                    | 1       |                  | I          |             |                    |                 |                         |                            |           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |             |             |         | and the same |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |     |
| 6     |                                                     | 1           | -           |                    |                      |                    |         | 1                | 1          | 1           |                    |                 | -                       |                            |           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |             |             |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | 1   |
| 7     |                                                     | +           | -           |                    |                      |                    |         | 1                | +          | -           | -                  | -               | -                       |                            | -         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |             |             |         |              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |     |
| 8     |                                                     | +           | -           | _                  |                      |                    |         | -                | +          | -           |                    | +               | +                       |                            | 1         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |             | _           |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | 4   |
| 9     |                                                     | -           | +           |                    |                      |                    |         | -                | +          | -           | 1                  | -               | +                       | -                          | -         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                           |             |             |         |              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |     |
| O ITM | ONAL COMMENTS                                       |             | _           | DEI INOU           | SHED BY              | AFFILIATIO         | N       |                  | -          | DAT         | F                  | -               | ME                      |                            | 01        | Che                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TED BY / AFEII IATION       | DATE,       | THE         | 1 0     | MPIEC        | CONDITIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NS.                             |     |
|       | onal Comments otal Recoverable and Dissolved Metals |             |             | ALCOHOL: LANGE     | Hopkins              |                    | 74      | - 22             |            | 1/10        |                    |                 | 25                      | -                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TED BY I AFFILIATION        |             | Millery Co. |         |              | - C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ~                               |     |
| . 16  | OUR PERSONS BUT PROPERTY HINGER                     |             |             |                    | Topkins              | DAG                |         |                  | 1          | 1/10        | 13                 | 12              | 20                      |                            | 1         | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/3/                       | HIII!       | 5 0845      | 1,0     |              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                               |     |
|       |                                                     |             |             |                    |                      |                    |         |                  |            |             |                    |                 | d                       | Ľ                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |             | 12          |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |     |
|       |                                                     |             |             | SAI                | MPLER NA             | ME AND S           | IGNA'   | TURE             |            |             |                    |                 |                         |                            |           | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |             |             | · v     | 1            | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | oler                            |     |
|       |                                                     |             |             |                    | PRIM                 | T Name of          | SAMP    | LER:             |            |             | Larr               | y He            | opkin                   | 5                          | ,         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                           |             |             | Temp in | US ni Hq     | Received or<br>Ice (Y/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Custody<br>saled Cools<br>(Y/N) |     |
|       |                                                     |             |             |                    | eici                 | NATURE of 1        | PANIC   | EP.              | -          | 2           | 0                  | A .             |                         | 11                         | 1         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DATE Signed (MM/DD/YY):     | 11/10       |             | 1 5     | F            | 909                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sealed                          | 1   |